Answer: [tex]6 \times 10^{-5}[/tex] is [tex]1.2 \times 10^4.[/tex] times greater than [tex]5 \times 10^{-9}[/tex].
Step-by-step explanation:
We are given two numbers.
First number : [tex]6 \times 10^{-5}[/tex].
Second number : [tex]5 \times 10^{-9}[/tex].
In order to find how many times [tex]6 \times 10^{-5}[/tex] is greater than [tex]5 \times 10^{-9}[/tex], we need to divide first number by second number.
Therefore,
[tex]6 \times 10^{-5}[/tex] ÷ [tex]5 \times 10^{-9}[/tex]
or [tex]\frac{6 \times 10^{-5}}{5 \times 10^{-9}}[/tex]
First we would divide 6 by 5.
On dividing 6 by 5, we get 1.2.
Now, we would divide 10^-5 by 10^-9.
In order to divide them, we can apply quotient rule of exponents [tex]\frac{a^m}{a^n} =a^{m-n}[/tex].
We get
[tex]\frac{10^{-5}}{10^{-9}} = 10^{-5-(-9)} = 10^{-5+9} = 10^4[/tex].
Therefore,
[tex]\frac{6 \times 10^{-5}}{5 \times 10^{-9}}[/tex] = [tex]1.2 \times 10^4.[/tex]
So, we could say finally [tex]6 \times 10^{-5}[/tex] is [tex]1.2 \times 10^4.[/tex] times greater than [tex]5 \times 10^{-9}[/tex].