Respuesta :

Answer: [tex]6 \times 10^{-5}[/tex] is [tex]1.2 \times 10^4.[/tex] times greater than [tex]5 \times 10^{-9}[/tex].


Step-by-step explanation:

We are given two numbers.

First number  : [tex]6 \times 10^{-5}[/tex].

Second number : [tex]5 \times 10^{-9}[/tex].

In order to find how many times   [tex]6 \times 10^{-5}[/tex] is greater than [tex]5 \times 10^{-9}[/tex], we need to divide first number by second number.

Therefore,

[tex]6 \times 10^{-5}[/tex] ÷ [tex]5 \times 10^{-9}[/tex]

or [tex]\frac{6 \times 10^{-5}}{5 \times 10^{-9}}[/tex]

First we would divide 6 by 5.

On dividing 6 by 5, we get 1.2.

Now, we would divide 10^-5 by 10^-9.

In order to divide them, we can apply quotient rule of exponents [tex]\frac{a^m}{a^n} =a^{m-n}[/tex].

We get

[tex]\frac{10^{-5}}{10^{-9}}  = 10^{-5-(-9)} = 10^{-5+9} = 10^4[/tex].

Therefore,

[tex]\frac{6 \times 10^{-5}}{5 \times 10^{-9}}[/tex] = [tex]1.2 \times 10^4.[/tex]

So, we could say finally [tex]6 \times 10^{-5}[/tex] is [tex]1.2 \times 10^4.[/tex] times greater than [tex]5 \times 10^{-9}[/tex].