Respuesta :
Answer:
A. 33
B. k=32
C. 1
D. [tex]\pm 1,\ \pm 2,\ \pm 4[/tex]
E. [tex]B=-2,\ D=5[/tex]
Step-by-step explanation:
In all parts for the quadratic equation [tex]ax^2+bx+c=0[/tex] use Vieta's formulas
[tex]x_1+x_2=-\dfrac{b}{a},\\ \\x_1\cdot x_2=\dfrac{c}{a},[/tex]
where [tex]x_1,\ x_2[/tex] are the roots of the quadratic equation.
A. For the equation [tex]x^2-5x-4=0,[/tex]
[tex]x_1+x_2=5,\\ \\x_1\cdot x_2=-4.[/tex]
Then
[tex](x_1+x_2)^2=x_1^2+2x_1\cdot x_2+x_2^2,\\ \\5^2=x_1^2+x_2^2+2\cdot (-4),\\ \\x_1^2+x_2^2=25+8=33.[/tex]
B. One of the roots of [tex]x^2+12x+k=0[/tex] is twice the other root, then [tex]x_2=2x_1.[/tex] By the Vieta's formulas,
[tex]x_1+x_2=3x_1=-12,\\ \\x_1\cdot x_2=2x_1^2=k.[/tex]
Then [tex]x_1=-4[/tex] and [tex]k=2x_1^2=2\cdot (-4)^2=2\cdot 16=32.[/tex]
C. The sum of the roots of the quadratic [tex]4x^2-4x-4[/tex] is [tex]-\dfrac{b}{c}=-\dfrac{-4}{4}=1.[/tex]
D. Note that
[tex](Ax+B)(Cx+D)=ACx^2+x(AD+BC)+BD,[/tex]
then [tex]AC=a=4.[/tex] If [tex]A,\ B,\ C,\ D[/tex] are integers, then you should check [tex]A=\pm 1,\ \pm 2,\ \pm 4.[/tex]
E. Consider [tex]3x^2 - x - 10 = (x + B)(3x + D).[/tex] Note that
[tex]x_1+x_2=\dfrac{1}{3},\\ \\x_1\cdot x_2=-\dfrac{10}{3}.[/tex]
Then
[tex]x_1=2,\ x_2=-\dfrac{5}{3}.[/tex]
Then [tex]3x^2 - x - 10 = (x -2)(3x+5),[/tex] hence [tex]B=-2,\ D=5.[/tex]