Respuesta :

(5q2 − r2s)(25q^4+5q^2r^2s+1r^4s^2)

Answer:

[tex](q^2-r^2s)(q^4+q^2r^2s+r^4s^2)=q^6-r^6s^3[/tex]

Step-by-step explanation:

Given : Expression [tex](q^2-r^2s)(q^4+q^2r^2s+r^4s^2)[/tex]

To find : Factor the expression?

Solution :

The given expression [tex](q^2-r^2s)(q^4+q^2r^2s+r^4s^2)[/tex] is the factored form of [tex]q^6-r^6s^3[/tex]  

Now, We solve to get the form

[tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex]

Taking RHS and compare with the given expression        

[tex](q^2-r^2s)(q^4+q^2r^2s+r^4s^2)[/tex]    

Where, [tex]a=q^2,b=r^2s[/tex]

[tex]=(q^2)^3-(r^2s)^3[/tex]

[tex]=q^6-r^6s^3[/tex]

Therefore, [tex](q^2-r^2s)(q^4+q^2r^2s+r^4s^2)=q^6-r^6s^3[/tex]

ACCESS MORE