Respuesta :
[tex]\bf 3(x-1)^2+2x-7\implies \stackrel{\stackrel{x=3}{\cfrac{}{}}}{3[(3)-1]^2+2(3)-7}\implies 3[2]^2+6-7 \\\\\\ 3[4]+(-1)\implies 12-1\implies 11[/tex]
(hope that helps )
ANSWER: 35
STEP BY STEP:
First rewrite the equation
(sry I cannot do exponents so I put the whole #) ⇩
3(x-1)2 + 2x -7
Then substitute x for what it is, in this case 3.
3(3-1)2 + 2x -7
Distribute
(9-3)2 + 2(3) - 7
Solve what is inside the parentheses
6 2 + 2(3) - 7
Solve exponents
36 + 2(3) - 7
Solve multiplication
36 + 6 - 7
Add
42 - 7
Subtract for final answer
35
ANSWER: 35
STEP BY STEP:
First rewrite the equation
(sry I cannot do exponents so I put the whole #) ⇩
3(x-1)2 + 2x -7
Then substitute x for what it is, in this case 3.
3(3-1)2 + 2x -7
Distribute
(9-3)2 + 2(3) - 7
Solve what is inside the parentheses
6 2 + 2(3) - 7
Solve exponents
36 + 2(3) - 7
Solve multiplication
36 + 6 - 7
Add
42 - 7
Subtract for final answer
35