Respuesta :

Answer:

17-i

--------

29

Step-by-step explanation:

To simply fractions with complex numbers, we have to multiply by the complex conjugate of the denominator.

The denominator is 5+2i, so the complex conjuate is 5-2i

3+i         5-2i

------  * ---------------

5+2i     5-2i


Simplifying the numerator

(3+i) * (5-2i) = 3*5 + 5i -3*2i -2i^2 = 15 +5i -6i -2(-1) = 15-i+2 = 17-i


Simplifying the denominator

(5+2i) (5-2i) = 25 -10i + 10i -4i^2 = 25 -4(-1) = 29


17-i

--------

29

Answer:

- [tex]\frac{1}{29}[/tex] i + [tex]\frac{17}{29}[/tex]

Step-by-step explanation:

to simplify the fraction ewe require to rationalise the denominator.

This is done by multiplying the numerator/ denominator by the conjugate of the denominator.

the conjugate of 5 + 2i is 5 - 2i, hence

= [tex]\frac{(3+i)(5-2i)}{(5+2i)(5-2i)}[/tex]

= [tex]\frac{15-i-2i^2}{25-4i^2}[/tex]

[ i² = ([tex]\sqrt{-1}[/tex])² = - 1 ]

= [tex]\frac{-i+17}{29}[/tex] = - [tex]\frac{1}{29}[/tex] i + [tex]\frac{17}{29}[/tex]


ACCESS MORE