Respuesta :
Answer:
17-i
--------
29
Step-by-step explanation:
To simply fractions with complex numbers, we have to multiply by the complex conjugate of the denominator.
The denominator is 5+2i, so the complex conjuate is 5-2i
3+i 5-2i
------ * ---------------
5+2i 5-2i
Simplifying the numerator
(3+i) * (5-2i) = 3*5 + 5i -3*2i -2i^2 = 15 +5i -6i -2(-1) = 15-i+2 = 17-i
Simplifying the denominator
(5+2i) (5-2i) = 25 -10i + 10i -4i^2 = 25 -4(-1) = 29
17-i
--------
29
Answer:
- [tex]\frac{1}{29}[/tex] i + [tex]\frac{17}{29}[/tex]
Step-by-step explanation:
to simplify the fraction ewe require to rationalise the denominator.
This is done by multiplying the numerator/ denominator by the conjugate of the denominator.
the conjugate of 5 + 2i is 5 - 2i, hence
= [tex]\frac{(3+i)(5-2i)}{(5+2i)(5-2i)}[/tex]
= [tex]\frac{15-i-2i^2}{25-4i^2}[/tex]
[ i² = ([tex]\sqrt{-1}[/tex])² = - 1 ]
= [tex]\frac{-i+17}{29}[/tex] = - [tex]\frac{1}{29}[/tex] i + [tex]\frac{17}{29}[/tex]