Respuesta :

frika

Answer:

[tex]6\sqrt{6}\ un.[/tex]

Step-by-step explanation:

Consider right triangle ABC with right angle ACB. If m∠ACD = 45°, then

m∠BCD=m∠ACB-m∠ACD=90°-45°=45°.

Since  CD ⊥ AB, then

m∠CDA=m∠CDB=90°.

Thus, triangles ACD and BCD are right triangles with right angles ADC and BDC. In these triangles:

m∠CAD=90°-m∠ACD=90°-45°=45°;

m∠CBD=90°-m∠BCD=90°-45°=45°.

Thus, triangles ACD and BCD are isosceles right triangles with

[tex]CD=AD=BD=6\sqrt{3}\ un.[/tex]

By the Pythagorean theorem,

[tex]AC^2=CD^2+AD^2,\\ \\AC^2=(6\sqrt{3})^2+(6\sqrt{3})^2,\\ \\AC^2=216,\\ \\AC=6\sqrt{6}\ un.[/tex]

Ver imagen frika

Answer:

[tex]AC =6\sqrt{6}[/tex]

Step-by-step explanation:

In ΔACD,

AC is the hypotenuse.

CD is the adjacent side to the angle 45°.

So, [tex]cos 45=\frac{CD}{AC}[/tex]

[tex]\frac{1}{\sqrt{2} } =\frac{6\sqrt{3} }{AC}[/tex]

[tex]AC=6\sqrt{3} \sqrt{2}[/tex]

[tex]=6\sqrt{6}[/tex]

Ver imagen JannetPalos
ACCESS MORE