Respuesta :
Answer:
[tex]6\sqrt{6}\ un.[/tex]
Step-by-step explanation:
Consider right triangle ABC with right angle ACB. If m∠ACD = 45°, then
m∠BCD=m∠ACB-m∠ACD=90°-45°=45°.
Since CD ⊥ AB, then
m∠CDA=m∠CDB=90°.
Thus, triangles ACD and BCD are right triangles with right angles ADC and BDC. In these triangles:
m∠CAD=90°-m∠ACD=90°-45°=45°;
m∠CBD=90°-m∠BCD=90°-45°=45°.
Thus, triangles ACD and BCD are isosceles right triangles with
[tex]CD=AD=BD=6\sqrt{3}\ un.[/tex]
By the Pythagorean theorem,
[tex]AC^2=CD^2+AD^2,\\ \\AC^2=(6\sqrt{3})^2+(6\sqrt{3})^2,\\ \\AC^2=216,\\ \\AC=6\sqrt{6}\ un.[/tex]

Answer:
[tex]AC =6\sqrt{6}[/tex]
Step-by-step explanation:
In ΔACD,
AC is the hypotenuse.
CD is the adjacent side to the angle 45°.
So, [tex]cos 45=\frac{CD}{AC}[/tex]
[tex]\frac{1}{\sqrt{2} } =\frac{6\sqrt{3} }{AC}[/tex]
[tex]AC=6\sqrt{3} \sqrt{2}[/tex]
[tex]=6\sqrt{6}[/tex]
