Respuesta :
QUESTION 1
The given inequality is
[tex]|m|-2>0[/tex]
We group like terms to get,
[tex]|m|>2[/tex]
This implies that,
[tex]-m>2[/tex] or [tex]m>2[/tex].
We simplify the inequality to get,
[tex]m<-2[/tex] or [tex]m>2[/tex].
We can write this interval notation to get,
[tex](-\infty,-2)\cup (2,+\infty)[/tex].
QUESTION 2
[tex]|x-4|-3\:>\:5[/tex].
We group like terms to get,
[tex]|x-4|\:>\:5+3[/tex].
[tex]|x-4|\:>\:8[/tex]
We split the absolute value sign to get,
[tex]-(x-4)\:>\:8[/tex] or [tex]x-4\:>\:8[/tex]
This implies that,
[tex]x-4\:<\:-8[/tex] or [tex]x-4\:>\:8[/tex]
[tex]x\:<\:-8+4[/tex] or [tex]x\:>\:8+4[/tex]
[tex]x\:<\:-4[/tex] or [tex]x\:>\:12[/tex]
We can write this interval notation to get,
[tex](-\infty,-4)\cup (12,+\infty)[/tex].
QUESTION 3
The given inequality is
[tex]|6+9x|\leq 24[/tex]
We split the absolute value sign to obtain,
[tex]-(6+9x)\leq 24[/tex] or [tex](6+9x)\leq 24[/tex]
This simplifies to
[tex]6+9x\ge -24[/tex] and [tex]6+9x\leq 24[/tex]
[tex]9x\ge -24-6[/tex] and [tex]9x\leq 24-6[/tex]
[tex]9x\ge -30[/tex] and [tex]9x\leq 18[/tex]
[tex]x\ge -\frac{10}{3}[/tex] and [tex]x\leq 2[/tex]
[tex]-\frac{10}{3}\leq x\leq2[/tex]
We write this in interval form to get,
[tex][-\frac{10}{3},2][/tex]
QUESTION 4
The given inequality is
[tex]|1-5a|>29[/tex]
We split the absolute value sign to get,
[tex]-(1-5a)>29[/tex] or [tex]1-5a>29[/tex]
This simplifies to,
[tex]1-5a\:<\:-29[/tex] or [tex]1-5a\:>\:29[/tex]
This implies that,
[tex]-5a\:<\:-29-1[/tex] or [tex]-5a\:>\:29-1[/tex]
[tex]-5a\:<\:-30[/tex] or [tex]-5a\:>\:28[/tex]
[tex]a\:>\:6[/tex] or [tex]a\:<\:-\frac{28}{5}[/tex]
We write this in interval notation to get,
[tex](-\infty,-\frac{28}{5})\cup (6,+\infty)[/tex]