GeneNee
contestada

Write a solution in Interval Notation - (you don't have to help me on all, 1 or 2 is fine c: )

1) | m | -2 > 0

2) | x - 4 | - 3 > 5

3) | 6 + 9x | ≤ 24

4) | 1 - 5a | > 29

Respuesta :

QUESTION 1

The given inequality is

[tex]|m|-2>0[/tex]

We group like terms to get,

[tex]|m|>2[/tex]


This implies that,

[tex]-m>2[/tex] or [tex]m>2[/tex].

We simplify the inequality to get,

[tex]m<-2[/tex] or [tex]m>2[/tex].

We can write this interval notation to get,

[tex](-\infty,-2)\cup (2,+\infty)[/tex].


QUESTION 2

[tex]|x-4|-3\:>\:5[/tex].

We group like terms to get,


[tex]|x-4|\:>\:5+3[/tex].


[tex]|x-4|\:>\:8[/tex]

We split the absolute value sign to get,

[tex]-(x-4)\:>\:8[/tex] or [tex]x-4\:>\:8[/tex]


This implies that,


[tex]x-4\:<\:-8[/tex] or [tex]x-4\:>\:8[/tex]


[tex]x\:<\:-8+4[/tex] or [tex]x\:>\:8+4[/tex]


[tex]x\:<\:-4[/tex] or [tex]x\:>\:12[/tex]


We can write this interval notation to get,

[tex](-\infty,-4)\cup (12,+\infty)[/tex].


QUESTION 3

The given inequality is

[tex]|6+9x|\leq 24[/tex]


We split the absolute value sign to obtain,

[tex]-(6+9x)\leq 24[/tex] or [tex](6+9x)\leq 24[/tex]


This simplifies to

[tex]6+9x\ge -24[/tex] and [tex]6+9x\leq 24[/tex]


[tex]9x\ge -24-6[/tex] and [tex]9x\leq 24-6[/tex]


[tex]9x\ge -30[/tex] and [tex]9x\leq 18[/tex]


[tex]x\ge -\frac{10}{3}[/tex] and [tex]x\leq 2[/tex]

[tex]-\frac{10}{3}\leq x\leq2[/tex]

We write this in interval form  to get,

[tex][-\frac{10}{3},2][/tex]


QUESTION 4

The given inequality is

[tex]|1-5a|>29[/tex]

We split the absolute value sign to get,

[tex]-(1-5a)>29[/tex] or [tex]1-5a>29[/tex]

This simplifies to,

[tex]1-5a\:<\:-29[/tex] or [tex]1-5a\:>\:29[/tex]


This implies that,

[tex]-5a\:<\:-29-1[/tex] or [tex]-5a\:>\:29-1[/tex]


[tex]-5a\:<\:-30[/tex] or [tex]-5a\:>\:28[/tex]


[tex]a\:>\:6[/tex] or [tex]a\:<\:-\frac{28}{5}[/tex]

We write this in interval notation to get,

[tex](-\infty,-\frac{28}{5})\cup (6,+\infty)[/tex]















ACCESS MORE