Respuesta :
Answer:
Please, see the attached files.
Step-by-step explanation:
Please, see the attached files.
![Ver imagen Professor1994](https://us-static.z-dn.net/files/d8b/55d881a4b0f11b9cc1cdabe272dd9f63.png)
![Ver imagen Professor1994](https://us-static.z-dn.net/files/d46/d0a43300f4ce86c06acadf343443bff5.png)
For the polynomial, [tex]f(x)=x^4+21x^2-100[/tex], the roots are [tex]2,-2,j5,-j5[/tex].
For the polynomial, [tex]f(x)=x^3-5x^2-25x+125[/tex], the roots are [tex]5;5;-5[/tex].
For the polynomial, [tex]f(x)=x^4+21x^2-100[/tex], the degree is [tex]4[/tex] so, the polynomial is a quartic polynomial. The total number of roots are also [tex]4[/tex]. To find the roots of the polynomial, factorise it as
[tex]x^4+21x^2-100=0\\(x^2-4)(x^2+25)=0\\(x-2)(x+2)(x-j5)(x+j5)=0\\x=2;-2;j5;-j5[/tex]
For the polynomial, [tex]f(x)=x^3-5x^2-25x+125[/tex], the degree is [tex]3[/tex] so, the polynomial is a cubic polynomial. The total number of roots are also [tex]3[/tex]. To find the roots of the polynomial, factorise it as
[tex]x^3-5x^2-25x+125=0\\(x-5)(x^2-25)=0\\(x-5)(x-5)(x+5)=0\\x=5;5;-5[/tex]
Learn more about polynomials here:
https://brainly.com/question/15301188?referrer=searchResults