For the data below construct a 95% confidence interval for the population mean.53.4 51.6 48.0 49.8 52.8 51.8 48.8 43.4 48.2 51.8 54.6 53.8 54.6 49.6 47.2

Respuesta :

Answer:

The 95% confidence interval is given below:

[tex]\bar{x} \pm t_{\frac{0.05}{2}} \left( \frac{s}{\sqrt{n}} \right)[/tex]

Where:

[tex]\bar{x} = 50.63[/tex] is the sample mean

[tex]t_{\frac{0.05}{2} } =2.145[/tex] is the critical value at 0.05 significance level for df = n-1 = 15 - 1 =14

[tex]s=3.1576[/tex] is the sample standard deviation

[tex]\therefore 50.63 \pm 2.145 \left( \frac{3.1576}{\sqrt{15}} \right)[/tex]

      [tex]50.63 \pm 1.75[/tex]

      [tex]\left(50.63 - 1.75, 50.63+1.75 \right)[/tex]

      [tex]\left(48.88,52.38\right)[/tex]

Therefore, the 95% confidence interval for the population mean is (48.88, 52.38)




RELAXING NOICE
Relax