Answer:
The 95% confidence interval is given below:
[tex]\bar{x} \pm t_{\frac{0.05}{2}} \left( \frac{s}{\sqrt{n}} \right)[/tex]
Where:
[tex]\bar{x} = 50.63[/tex] is the sample mean
[tex]t_{\frac{0.05}{2} } =2.145[/tex] is the critical value at 0.05 significance level for df = n-1 = 15 - 1 =14
[tex]s=3.1576[/tex] is the sample standard deviation
[tex]\therefore 50.63 \pm 2.145 \left( \frac{3.1576}{\sqrt{15}} \right)[/tex]
[tex]50.63 \pm 1.75[/tex]
[tex]\left(50.63 - 1.75, 50.63+1.75 \right)[/tex]
[tex]\left(48.88,52.38\right)[/tex]
Therefore, the 95% confidence interval for the population mean is (48.88, 52.38)