Answer:
The inverse of the function is [tex]g(x)=\frac{5}{2}x+10[/tex].
Step-by-step explanation:
The given function is
[tex]f(x)=\frac{2}{5}x-4[/tex]
[tex]y=\frac{2}{5}x-4[/tex]
Interchange the variable x and y.
[tex]x=\frac{2}{5}y-4[/tex]
Now find the value of y in terms of x,
[tex]x+4=\frac{2}{5}y[/tex]
[tex]5(x+4)=2y[/tex]
[tex]5x+20=2y[/tex]
Divide both sides by 2.
[tex]y=\frac{5}{2}x+10[/tex]
Put y=g(x)
[tex]g(x)=\frac{5}{2}x+10[/tex]
Therefore the inverse of the function is [tex]g(x)=\frac{5}{2}x+10[/tex].
If two function f and g are inverse of each other then [tex](f\circ g)(x)=x[/tex].
[tex](f\circ g)(x)=f(g(x))[/tex]
[tex](f\circ g)(x)=f(\frac{5}{2}x+10)[/tex]
[tex](f\circ g)(x)=\frac{2}{5}(\frac{5}{2}x+10)-4[/tex]
[tex](f\circ g)(x)=x+4-4[/tex]
[tex](f\circ g)(x)=x[/tex]
Therefore f(x) and g(x) are inverse of each other.
Graph of both functions are mirror image of each other across the line y=x, therefore functions are inverses of each other.