Find the perimeter of the following isosceles triangle. show work

Answer
Find out the perimeter of the isosceles triangle.
To prove
As shown in the figure.
P(0,4) , Q(-2,0) and R(2,0) are the vertices of the triangle PQR.
Formula
[tex]Distance\ formula = \sqrt{(x_{2} - x_{1})^{2} +(y_{2} -y_{1})^{2}}[/tex]
As P(0,4) and Q(-2,0)
[tex]PQ = \sqrt{(-2 - 0)^{2} +(0 - 4)^{2}}[/tex]
[tex]PQ = \sqrt{4+16}[/tex]
[tex]PQ = \sqrt{20}\unit[/tex]
In the isoceles triangle the two sides of the triangles are equal .
Therefore PQ = PR
[tex]PR = \sqrt{20}\unit[/tex]
As Q(-2,0) and R(2,0)
[tex]QR = \sqrt{(2- (-2))^{2} +(0 - 0)^{2}}[/tex]
[tex]QR = \sqrt{(4)^{2}}[/tex]
QR = 16 unit
[tex]Perimeter\ of\ triangle PQR = \sqrt{20} +\sqrt{20} + 16[/tex]
[tex]Perimeter\ of\ triangle PQR = 4\sqrt{5} + 16\ units^{2}[/tex]