How many solutions will this system of equations have?


y = 3.5x − 3.5

y = −3.5x + 3.5 (2 points)




No solution


Infinite solutions


One solution


Two solutions

6.

(05.01)

Given the equation 3x − 4y = 8, which equation below would cause a consistent-dependent system? (2 points)




3x + 4y = −8


6x − 8y = 12


9x − 12y = 24


16x + 12y = −10

7.

(05.01)

A business has $11,080 to spend on new laptops and tablet computers for its salespeople. The laptops cost $515 each. The tablets cost $285 each. The business wants each salesperson to have either a laptop or a tablet. There are 30 salespeople. How many of each type of computer should the business buy? (2 points)




9 laptops and 21 tablets


11 laptops and 19 tablets


19 laptops and 11 tablets


21 laptops and 9 tab

Respuesta :

Answer: One solution

Step-by-step explanation:

y = 3.5x - 3.5

y = -3.5x + 3.5

Use substitution to solve:

 3.5x - 3.5 = -3.5x + 3.5

+3.5x           +3.5x          

7.0x - 3.5 =             3.5

        +3.5             +3.5

7.0x         =              7.0

÷7.0                      ÷7.0

    x         =              1.0

Since there is a solution for x, then there is one solution

************************************************************************************

Answer: 9x - 12y = 24

Step-by-step explanation:

consistent-dependent means they are the same line. This occurs when the given line is multiplied by a constant.

Let the constant be 3, then y = 3(3x - 4y = 8)

                                                 = 9x - 12y = 24

***********************************************************************************

Answer: 19 laptops and 11 tablets

Step-by-step explanation:

Laptops (x): $515

Tablets (y): $285

EQ1: 515x + 285y = 11,080

EQ2: x + y = 30

Use elimination to solve:

515x + 285y = 11,080 ⇒  ⇒  ⇒ ⇒ 515x + 285y = 11,080

x + y = 30 ⇒ =515(x + y = 30)  ⇒  -515x - 515y = -15,450

                                                                -230y =  4,370

                                                                ÷-230     ÷-230

                                                                       y =  19

x + y = 30

x + 19 = 30

x = 11

RELAXING NOICE
Relax