Respuesta :
PART A
The given equation is
[tex]h(t) = - 16 {t}^{2} + 40t + 4[/tex]
In order to find the maximum height, we write the function in the vertex form.
We factor -16 out of the first two terms to get,
[tex]h(t) = - 16 ({t}^{2} - \frac{5}{2} t) + 4[/tex]
We add and subtract
[tex] - 16(- \frac{5}{4} )^{2} [/tex]
to get,
[tex]h(t) = - 16 ({t}^{2} - \frac{5}{2} t) + - 16( - \frac{5}{4})^{2} - -16( - \frac{5}{4})^{2} + 4[/tex]
We again factor -16 out of the first two terms to get,
[tex]h(t) = - 16 ({t}^{2} - \frac{5}{2} t + ( - \frac{5}{4})^{2} ) - -16( - \frac{5}{4})^{2} + 4[/tex]
This implies that,
[tex]h(t) = - 16 ({t}^{2} - \frac{5}{2} t + ( - \frac{5}{4}) ^{2} ) + 16( \frac{25}{16}) + 4[/tex]
The quadratic trinomial above is a perfect square.
[tex]h(t) = - 16 ( t- \frac{5}{4}) ^{2} +25+ 4[/tex]
This finally simplifies to,
[tex]h(t) = - 16 ( t- \frac{5}{4}) ^{2} +29[/tex]
The vertex of this function is
[tex]V( \frac{5}{4} ,29)[/tex]
The y-value of the vertex is the maximum value.
Therefore the maximum value is,
[tex]29[/tex]
PART B
When the ball hits the ground,
[tex]h(t) = 0[/tex]
This implies that,
[tex]- 16 ( t- \frac{5}{4}) ^{2} +29 = 0[/tex]
We add -29 to both sides to get,
[tex]- 16 ( t- \frac{5}{4}) ^{2} = - 29[/tex]
This implies that,
[tex]( t- \frac{5}{4}) ^{2} = \frac{29}{16} [/tex]
[tex] t- \frac{5}{4} = \pm \sqrt{ \frac{29}{16} } [/tex]
[tex] t = \frac{5}{4} \pm \frac{ \sqrt{29} }{4} [/tex]
[tex] t = \frac{ 5 + \sqrt{29} }{4} = 2.60[/tex]
or
[tex] t = \frac{ 5 - \sqrt{29} }{4} = - 0.10[/tex]
Since time cannot be negative, we discard the negative value and pick,
[tex]t = 2.60s[/tex]
The given equation is
[tex]h(t) = - 16 {t}^{2} + 40t + 4[/tex]
In order to find the maximum height, we write the function in the vertex form.
We factor -16 out of the first two terms to get,
[tex]h(t) = - 16 ({t}^{2} - \frac{5}{2} t) + 4[/tex]
We add and subtract
[tex] - 16(- \frac{5}{4} )^{2} [/tex]
to get,
[tex]h(t) = - 16 ({t}^{2} - \frac{5}{2} t) + - 16( - \frac{5}{4})^{2} - -16( - \frac{5}{4})^{2} + 4[/tex]
We again factor -16 out of the first two terms to get,
[tex]h(t) = - 16 ({t}^{2} - \frac{5}{2} t + ( - \frac{5}{4})^{2} ) - -16( - \frac{5}{4})^{2} + 4[/tex]
This implies that,
[tex]h(t) = - 16 ({t}^{2} - \frac{5}{2} t + ( - \frac{5}{4}) ^{2} ) + 16( \frac{25}{16}) + 4[/tex]
The quadratic trinomial above is a perfect square.
[tex]h(t) = - 16 ( t- \frac{5}{4}) ^{2} +25+ 4[/tex]
This finally simplifies to,
[tex]h(t) = - 16 ( t- \frac{5}{4}) ^{2} +29[/tex]
The vertex of this function is
[tex]V( \frac{5}{4} ,29)[/tex]
The y-value of the vertex is the maximum value.
Therefore the maximum value is,
[tex]29[/tex]
PART B
When the ball hits the ground,
[tex]h(t) = 0[/tex]
This implies that,
[tex]- 16 ( t- \frac{5}{4}) ^{2} +29 = 0[/tex]
We add -29 to both sides to get,
[tex]- 16 ( t- \frac{5}{4}) ^{2} = - 29[/tex]
This implies that,
[tex]( t- \frac{5}{4}) ^{2} = \frac{29}{16} [/tex]
[tex] t- \frac{5}{4} = \pm \sqrt{ \frac{29}{16} } [/tex]
[tex] t = \frac{5}{4} \pm \frac{ \sqrt{29} }{4} [/tex]
[tex] t = \frac{ 5 + \sqrt{29} }{4} = 2.60[/tex]
or
[tex] t = \frac{ 5 - \sqrt{29} }{4} = - 0.10[/tex]
Since time cannot be negative, we discard the negative value and pick,
[tex]t = 2.60s[/tex]