Given: Line AD is congruent Line CD; Angle 3 is congruent to Angle 4
Prove: Line DB bisects Angle ABC

Step-by-step explanation:
Given : AD=CD and
∠3=∠4
To prove : Line DB bisects ∠ABC
i.e.∠ABD=∠CBD
Proof : Consider ΔABD and ΔCBD,
[tex]\angle3=\angle4\ \{given\}\\\\\implies 180\textdegree-\angle3=180\textdegree-\angle4\\\\\implies\angle 1=\angle 2[/tex]
and
[tex]AD=CD\ \{given\}[/tex]
and
[tex]BD=BD\ \{common\}[/tex]
So, ΔABD ≅ ΔCBD (By SAS criterion}
Hence , By CPCT (corresponding part of congruent triangle}
∠ABD=∠CBD
Therefore, Line DB bisects ∠ABC.