Respuesta :

Answer:

Width =  21731 inches .

Step-by-step explanation:

Given  : A rectangle has a perimeter of 6x³+9x²-10x+7 and a length of x.

To find : find the width of the rectangle when the length is 19 inches

Solution : We have given

Perimeter = 6x³+9x²-10x+7

x = length

Length = 19.

Width = w .

By the formula of perimeter :

Perimeter = 2 ( length + width)

Plugging the values

6x³+9x²-10x+7 = 2 ( 19 + w).

x = 19 inches.

6(19)³+9(19)²-10(19)+7 = 2( 19 + w).

6(6859) + 9 ( 361) - 190 + 7 = 2 ( 19 + w).

41154 + 3249 -190 + 7 = 2 ( 19 + w).

43500  = 2 ( 19 + w).

On dividing both sides by 2

21750 = 19 + w.

On subtracting both sides by 19

w = 21750 -19.

w = 21731 inches.

Therefore, Width =  21731 inches .

Using the perimeter concept, it is found that:

The width of the rectangle is of 22091 inches.

------------------------------------------

Perimeter of a rectangle:

The perimeter of a rectangle of length l and width w is given by:

[tex]P = 2(w + l)[/tex]

------------------------------------------

  • Length of x means that [tex]l = x[/tex]
  • The perimeter is: [tex]P = 6x^3 + 9x^2 - 10x + 7[/tex]

------------------------------------------

Since the length is 19: [tex]l = x = 19[/tex]

And

[tex]P = 2(w + l)[/tex]

[tex]6x^3 + 9x^2 - 10x + 7 = 2(w + x)[/tex]

[tex]6(19)^3 + 9(19)^2 - 10(19) + 7 = 2w + 38[/tex]

[tex]44220 - 38 = 2w[/tex]

[tex]2w = 44182[/tex]

[tex]w = \frac{44182}{2}[/tex]

[tex]w = 22091[/tex]

The width of the rectangle is of 22091 inches.

A similar problem is given at https://brainly.com/question/10489198

ACCESS MORE