Which of the following statements are true about the given rational equation?
4/x+6 +1/x²=x+10/x³+6x²
Check all of the boxes that apply.
A. x = 1 is a solution.
B. x = 0 is an extraneous solution.=
C. x = –1 is a solution.
D. x = –6 is an extraneous solution.

Respuesta :

frika

Answer:

Correct choices are A and C

Step-by-step explanation:

Consider the equation

[tex]\dfrac{4}{x+6}+\dfrac{1}{x^2}=\dfrac{x+10}{x^3+6x^2}.[/tex]

Note that [tex]x\neq 0,\ x\neq-6.[/tex]

The left side of this equation is equal to

[tex]\dfrac{4}{x+6}+\dfrac{1}{x^2}=\dfrac{4\cdot x^2+1\cdot (x+6)}{(x+6)x^2}=\dfrac{4x^2+x+6}{x^3+6x^2}.[/tex]

Since the left and the right sides of this equation have the same denominators, their numerators are equal

[tex]4x^2+x+6=x+10.[/tex]

Then

[tex]4x^2=10-6,\\ \\4x^2=4,\\ \\x^2=1,\\ \\x_1=1,\ x_2=-1.[/tex]

Both these numbers are the solutions of the given equation.

Answer:

A and C is correct.

Step-by-step explanation:

[tex]\text{Rational Equation: }\frac{4}{x+6}+\frac{1}{x^2}=\frac{x+10}{x^3+6x^2}[/tex]

First we simplify this equation (-1 + x^2)/(x (6 + x))

[tex]\dfrac{x^2-1}{x(x+6)}=0[/tex]

Solution set: x=1,-1

We have to check all option which is solution of above equation.

A)  x=1, we will put x=1 into equation both sides.

[tex]\text{Left Side:} \Rightarrow \frac{4}{x+6}+\frac{1}{x^2}[/tex]

[tex] \Rightarrow \frac{4}{1+6}+\frac{1}{1^2}[/tex]

[tex] \Rightarrow \frac{11}{7}[/tex]

[tex]\text{Right Side:} \Rightarrow \frac{x+10}{x^3+6x^2}[/tex]

[tex] \Rightarrow \frac{1+10}{1^3+6\times 1^2}[/tex]

[tex] \Rightarrow \frac{11}{7}[/tex]

[tex]\text{Left Side}=\text{Right Side}=\frac{11}{7}[/tex]

Thus, x=1 is a solution.

C)  x=-1, we will put x=-1 into equation both sides.

[tex]\text{Left Side:} \Rightarrow \frac{4}{x+6}+\frac{1}{x^2}[/tex]

[tex] \Rightarrow \frac{4}{-1+6}+\frac{1}{(-1)^2}[/tex]

[tex] \Rightarrow \frac{9}{5}[/tex]

[tex]\text{Right Side:} \Rightarrow \frac{-1+10}{-1^3+6(-1)^2}[/tex]

[tex] \Rightarrow \frac{9}{-1+6\times 1}[/tex]

[tex] \Rightarrow \frac{9}{5}[/tex]

[tex]\text{Left Side}=\text{Right Side}= \frac{9}{5}[/tex]

Thus, x=-1 is a solution.

Thus, A and C is correct.


ACCESS MORE