Answer:
[tex]4\sqrt{2}+10[/tex]
Step-by-step explanation:
In trapezoid FPST, FP=ST, then this trapezoid is isosceles, so
[tex]m\angle F=m\angle T=45^{\circ}.[/tex]
Draw the height PH. Triangle FPH is right triangle with two angles of measure 45°. This means that FH=HP. By the Pythagorean theorem,
[tex]FH^2+PH^2=PF^2,\\ \\2FH^2=8^2,\\ \\FH^2=32,\\ \\FH=4\sqrt{2}.[/tex]
Since trapezoid FPST is isosceles, the base FT hasthe length
[tex]FT=2FH+PS=8\sqrt{2}+10.[/tex]
Then the length of the midline is
[tex]MN=\dfrac{FT+PS}{2}=\dfrac{8\sqrt{2}+10+10}{2}=4\sqrt{2}+10.[/tex]