Answer:
(a) [tex]3^{-2}=\frac{1}{9}[/tex]
(b) [tex]4^{-3}=\frac{1}{64}[/tex]
(c) [tex]2^{-6}=\frac{1}{64}[/tex]
Step-by-step explanation:
To find the exact value in fractions of the followings:
Exponents also called powers its a way of expressing a number multiplied by itself by a certain number of times.
Using [tex]a^{-m}= \frac{1}{a^m}[/tex] .......[1]
(a)
Fraction represents a part of a whole or more generally, any number of equal parts.
[tex]3^{-2}[/tex] = [tex]\frac{1}{3^2}=\frac{1}{3\times 3}=\frac{1}{9}[/tex] [ Using [1]]
(b)
[tex]4^{-3}[/tex] = [tex]\frac{1}{4^3} =\frac{1}{4\times 4\times 4}=\frac{1}{64}[/tex] [ Using [1]]
(c)
[tex]2^{-6}[/tex] = [tex]\frac{1}{2^6} =\frac{1}{2\times 2\times 2\times 2\times 2\times 2}=\frac{1}{64}[/tex] [ Using [1]]