Remember Heron's formula, which states the following:
[tex]A = \sqrt{s(s - a)(s - b)(s - c)}[/tex]
In this case, we can say [tex]\overline{AB} = \overline{BC} = \overline{AC} = a[/tex].
Thus,
[tex]s = \dfrac{a + a + a}{2} = \dfrac{3a}{2}[/tex],
Now, let's apply this to Heron's formula:
[tex]A = \sqrt{\Big( \dfrac{3a}{2} \Big) \Big( \dfrac{a}{2} \Big) ^3}[/tex]
Now, let's try to simplify this expression if possible.
[tex]A = \sqrt{\Big( \dfrac{3a}{2} \Big) \Big( \dfrac{a}{2} \Big) ^3}[/tex]
[tex]A = \sqrt{\Big( \dfrac{3a}{2} \Big) \Big( \dfrac{a^3}{8} \Big)}[/tex]
[tex]A = \sqrt{\dfrac{3a^4}{16}}[/tex]
[tex]A = \sqrt{\dfrac{3}{16}} \cdot \sqrt{a^4}[/tex]
[tex]A = a^2 \sqrt{\dfrac{3}{16}}[/tex]
[tex]A = a^2 \sqrt{\dfrac{3}{4}} \cdot \sqrt{\dfrac{1}{4}}[/tex]
[tex]A = a^2 \dfrac{\sqrt{3}}{2} \cdot \dfrac{1}{2}[/tex]
[tex]A = \dfrac{a^2 \sqrt{3}}{4}[/tex]
Our answer is [tex]\boxed{A = \dfrac{a^2 \sqrt{3}}{4}}[/tex].