Please please please i really need to know
![Please please please i really need to know class=](https://us-static.z-dn.net/files/d1a/11612331cdf92a2b7424476565d68be0.jpg)
The runner has initial velocity
[tex]\vec v_0=\left(2.38\,\dfrac{\rm m}{\rm s}\right)\,\vec\jmath[/tex]
and acceleration
[tex]\vec a=\left(0.310\,\dfrac{\rm m}{\mathrm s^2}\right)\left(\cos(-62.0^\circ)\,\vec\imath+\sin(-62.0^\circ)\,\vec\jmath\right)[/tex]
Her velocity [tex]\vec v[/tex] at time [tex]t[/tex] is
[tex]\vec v=\vec v_0+\vec at[/tex]
[tex]\vec v=\left(0.310\,\dfrac{\rm m}{\mathrm s^2}\right)\cos(-62.0^\circ)\,t\,\vec\imath+\left(2.38\,\dfrac{\rm m}{\rm s}+\left(0.310\,\dfrac{\rm m}{\mathrm s^2}\right)\sin(-62.0^\circ)\,t\right)\,\vec\jmath[/tex]
The velocity vector will be pointing directly east when when the vertical component of this vector is 0 and the horizontal component has a positive sign. The second condition is always true, since its value is a constant [tex]0.146\,\dfrac{\rm m}{\rm s}[/tex]. The first condition is met at
[tex]2.38\,\dfrac{\rm m}{\rm s}+\left(0.310\,\dfrac{\rm m}{\mathrm s^2}\right)\sin(-62.0^\circ)\,t=0\implies t=8.70\,\rm s[/tex]