The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points A(-6, 6) and B(12, 3). Substitute:
[tex]m=\dfrac{3-6}{12-(-6)}=\dfrac{-3}{18}=-\dfrac{3:3}{18:3}=-\dfrac{1}{6}[/tex]
Therefore we have [tex]y=-\dfrac{1}{6}x+b[/tex].
Put the coordinates of the point B to the equation:
[tex]3=-\dfrac{1}{6}(12)+b[/tex]
[tex]3=-2+b[/tex] add 2 to both sides
[tex]5=b\to b=5[/tex]
Answer:
[tex]m=-\dfrac{1}{6}\\\\b=5[/tex]