Respuesta :
Answer:
the length is [tex]\dfrac{22}{\sqrt{3}}[/tex] and the width is [tex]121-\left(\dfrac{11}{\sqrt{3}}\right)^2=121-\dfrac{121}{3}=\dfrac{242}{3}.[/tex]
Step-by-step explanation:
Let points A and B be placed on the x-axis. Their coordinates are [tex]A(x_0,0)\ (x_0>0)[/tex] and [tex]B(-x_0,0)[/tex] (because of parabola symmetry). Two other vertices lie on the parabola, then [tex]C(-x_0,121-x_0^2)[/tex] and [tex]D(x_0,121-x_0^2).[/tex] The length of the side AB is [tex]2x_0[/tex] and the length of the side AD is [tex]121-x_0^2.[/tex] Thus, the area of the rectangle ABCD is
[tex]A=2x_0\cdot (121-x_0^2)=242x_0-2x_0^3.[/tex]
Find the derivative A':
[tex]A'=242-2\cdot 3x_0^2=242-6x_0^2.[/tex]
Equate A' to 0:
[tex]242-6x_0^2=0,\\ \\x_0^2=\dfrac{121}{3},\\ \\x_0=\dfrac{11}{\sqrt{3}}.[/tex]
The maximum area of the rectangle is
[tex]A_{max}=242\cdot \dfrac{11}{\sqrt{3}}-2\cdot \left(\dfrac{11}{\sqrt{3}}\right)^3=\dfrac{2662}{\sqrt{3}}-\dfrac{2662}{3\sqrt{3}}=\dfrac{5324}{3\sqrt{3}}\ un^2.[/tex]
The dimensions of the rectangle are:
the length is [tex]\dfrac{22}{\sqrt{3}}\ un.[/tex] and the width is [tex]121-\left(\dfrac{11}{\sqrt{3}}\right)^2=121-\dfrac{121}{3}=\dfrac{242}{3}\ un.[/tex]
![Ver imagen frika](https://us-static.z-dn.net/files/d8c/de38dccc7f147c143f454048c6e299b6.jpg)
The dimensions of the rectangle with maximum area is given by x and y
values at the maximum value of the function for its area.
The correct responses are;
- [tex]\mathrm{The \ width \ of \ the \ rectangle \ is} \ \underline{\dfrac{22}{3} \cdot \sqrt{3}}[/tex]
- The height of the rectangle is [tex]80.\overline 6[/tex]
Reasons:
The given function on which the vertices is located is y = 121 - x²
The coefficient of x in the given function is 0, therefore, the location of the
x-coordinate of the vertex of the parabola is on the y-axis.
The height of the rectangle, y = 121 - x²
The rectangle will extend equally on both sides of the y-axis, therefore;
The width of the rectangle = 2·x
The area of the rectangle, A = 2·x × (121 - x²) = 242·x - 2·x³
At the maximum area, we have;
[tex]\dfrac{dA}{dx} =\dfrac{d \left(242 \cdot x - 2 \cdot x^3\right)}{dx} = 242 - 6 \cdot x^2 = 0[/tex]
Which gives;
[tex]x^2 = \dfrac{242}{6}[/tex]
[tex]x = \dfrac{11}{3} \cdot \sqrt{3}[/tex]
[tex]\mathrm{The \ width \ of \ the \ rectangle } = 2\cdot x = 2 \times \dfrac{11}{3} \cdot \sqrt{3} = \dfrac{22}{3} \cdot \sqrt{3}[/tex]
The height of the rectangle, y = 121 - x²
[tex]\therefore y = 121 - \dfrac{242}{6} = \dfrac{242}{3} = 80\dfrac{2}{3} = 80.\overline 6[/tex]
The height of the rectangle, y = [tex]\underline{80.\overline 6}[/tex]
Learn more here;
https://brainly.com/question/21584647