Solve for x, y, and z

ANSWER
[tex]x=-3,y=-1,z=-2[/tex]
EXPLANATION
The given equations are:
[tex]3x+4y-5z=-3--(1)[/tex]
[tex]-5x-2y+6z=5--(2)[/tex]
and
[tex]4x-8y+3z=-10[/tex]
[tex]3z=8y-4x-10[/tex]
[tex]z=\frac{8y-4x-10}{3}--(3)[/tex]
We substitute equation (3) into equation (2) and (1).
This implies that;
[tex]3x+4y-5\frac{(8y-4x-10)}{3}=-3[/tex]
We multiply through by 3 to get,
[tex]9x+12y-5(8y-4x-10)=-9[/tex]
We expand now to get,
[tex]9x+12y-40y+20x+50=-9[/tex]
[tex]29x-28y=-59--(4)[/tex]
We now put equation 3 in 2
[tex]-5x-2y+6\frac{(8y-4x-10)}{3}=5[/tex]
This gives us,
[tex]-5x-2y+2(8y-4x-10)=5[/tex]
We expand to obtain;
[tex]-5x-2y+16y-8x-20=5[/tex]
[tex]-13x+14y=25---(5)[/tex]
We nw solve equation (5) an (4) simultaneously.
Let us multiply equation (5) by 2 to get,
[tex]-26x+28y=50---(6)[/tex]
We add equation (6) and (4) to obtain,
[tex]3x=-9[/tex]
[tex]\Rightarrow x=-3[/tex]
We substitute the value of [tex]x[/tex] in to equation (5)
[tex]-13(-3)+14y=25[/tex]
[tex]39+14y=25[/tex]
[tex]14y=25-39[/tex]
[tex]14y=-14[/tex]
[tex]y=-1[/tex]
This implies that,
[tex]z=\frac{8(-1)-4(-3)-10}{3}[/tex]
[tex]z=\frac{-8+12-10}{3}[/tex]
[tex]z=\frac{-6}{3}[/tex]
[tex]z=-2[/tex]
[tex]x=-3,y=-1,z=-2[/tex]
The correct answer is B.
[tex]3x+4y-5z=-3--(1)[/tex]
[tex]-5x-2y+6z=5--(2)[/tex]
[tex]4x-8y+3z=-10--(3)[/tex]
We multiply equation (1) by 2 to get,
[tex]6x+8y-10z=-6 --(4)[/tex]
We multiply equation (2) by 4,
[tex]-20x-8y+24z=20--(5)[/tex]
Equation (3)-(5)
[tex]24x-21z=-30--(6)[/tex]
Equation (4) + (3)
[tex]10x-7z=-16--(7)[/tex]
We solve (7) and (60 simultaneously.
Multiply equation 7 by (3)
[tex]30x-21z=-48--(8)[/tex]
Equation (6) -(8)
[tex]-6x=18[/tex]
[tex]x=-3[/tex]
This implies,
[tex]10(-3)-7z=-16[/tex]
[tex]-30-7z=-16[/tex]
[tex]-7z=-16+30[/tex]
[tex]-7z=14[/tex]
[tex]z=-2[/tex]
[tex]3(-3)+4y-5(-2)=-3[/tex]
[tex]-9+4y+10=-3[/tex]
[tex]4y+1=-3[/tex]
[tex]4y=-4[/tex]
[tex]y=-1[/tex]
The solution is
[tex]x=-3,y=-1,z=-2[/tex]
I would do linear combinations
looking at the coeffients, I would cancel y first
multiply 2nd equation by 2 and add the 1st equation to it to get
-7x+0y+7z=7
-7x+7z=7
multiply first equation by 2 and add it to the last equation to get
10x+0y-7z=-16
10x-7z=-16
we now consider the 2 equations
-7x+7z=7 and
10x-7z=-16
add them together
3x+0z=-9
3x=-9
x=-3
sub back
-7x+7z=7
-7(-3)+7z=7
21+7z=7
7z=-14
z=-2
sub back
3x+4y-5z=-3
3(-3)+4y-5(-2)=-3
-9+4y+10=-3
4y=-4
y=-1
(x,y,z)=(-3,-1,-2)