Respuesta :
[tex](\frac{1}{1-cos(x)})-(\frac{cos(x)}{1+cos(x)})[/tex]
cscx is 1/sinx
maybe they want us to use pythagorean identity
[tex]cos^2(x)+sin^2(x)=1[/tex]
I notice we have 1-cos(x) and 1+cos(x), if we multiply them, we get [tex]1-cos^2(x)[/tex]
and if we look at the pythagorean identity and minus cos^2(x) from both sides, we get
[tex]sin^2(x)=1-cos^2(x)[/tex]
since [tex]csc(x)=\frac{1}{sin(x)}[/tex], [tex]csc^2(x)=\frac{1}{sin^2(x)}=\frac{1}{1-cos^2(x)}[/tex]
(recall that (a-b)(a+b)=a²-b²)
match the denomenators of the original fraction
multiply first fraction by [tex]\frac{1+cos(x)}{1+cos(x)}[/tex] and the 2nd by [tex]\frac{1-cos(x)}{1-cos(x)}[/tex]
[tex](\frac{1+cos(x)}{1-cos^2(x)})-(\frac{cos(x)(1-cos(x))}{1-cos^2(x)})=[/tex]
[tex]((csc^2(x))(1+cos(x)))-((csc^2(x))(cos(x)-cos^2(x)))=[/tex]
[tex]csc^2(x)+csc^2(x)cos(x)-(csc^2(x)cos(x)-csc^2(x)cos^2(x)=[/tex]
[tex]csc^2(x)+csc^2(x)cos(x)-csc^2(x)cos(x)+csc^2(x)cos^2(x)=[/tex]
[tex]csc^2(x)+csc^2(x)cos^2(x)=[/tex]
[tex]csc^2(x)(1+cos^2(x))[/tex], hmm, to get ride of those cos(x)
look to the pythagorean identity again
[tex]sin^2(x)+cos^2(x)=1[/tex], force one side into form 1+cos^2(x)
[tex]1+cos^2(x)=2-sin^2(x)[/tex], recall that since csc(x)=1/sin(x), sin(x)=1/csc(x) and sin^2(x)=1/(csc^2(x))
[tex]1+cos^2(x)=2-\frac{1}{csc^2(x)}[/tex]
subsituting
[tex]csc^2(x)(1+cos^2(x))=[/tex]
[tex](csc^2(x))(2-\frac{1}{csc^2(x)})=[/tex] distributing
[tex]2csc^2(x)-\frac{csc^2(x)}{csc^2(x)}=[/tex]
[tex]2csc^2(x)-1[/tex] is the simplified expression
Trigonometry identities are proved by using several other identities.
The simplified form of [tex]\mathbf{\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x}}[/tex] is [tex]\mathbf{2csx^2 x - 1 }}[/tex]
The trigonometric expression is given as;
[tex]\mathbf{\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x}}[/tex]
Take LCM
[tex]\mathbf{\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x} =\frac{1 + \cos x - \cos x(1 - \cos x)}{(1 - \cos x)(1 + \cos x)} }[/tex]
Open brackets
[tex]\mathbf{\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x} =\frac{1 + \cos x - \cos x + \cos^2 x}{1 - \cos^2 x} }[/tex]
Evaluate like terms
[tex]\mathbf{\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x} =\frac{1 + \cos^2 x}{1 - \cos^2 x} }[/tex]
In trigonometry:
[tex]\mathbf{ \cos^2x = 1 - \sin^2 x}[/tex]
So, we have:
[tex]\mathbf{\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x} =\frac{1 +1 - \sin^2 x}{sin^2 x} }}[/tex]
[tex]\mathbf{\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x} =\frac{2 - \sin^2 x}{sin^2 x} }}[/tex]
Split
[tex]\mathbf{\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x} =\frac{2}{sin^2x} - \frac{\sin^2 x}{sin^2 x} }}[/tex]
[tex]\mathbf{\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x} =\frac{2}{sin^2x} - 1 }}[/tex]
The inverse of sin(x) is csc(x).
So, we have:
[tex]\mathbf{\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x} =2csx^2 x - 1 }}[/tex]
Hence, the simplified form of [tex]\mathbf{\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x}}[/tex] is [tex]\mathbf{2csx^2 x - 1 }}[/tex]
Read more about trigonometry identities at:
https://brainly.com/question/10680548