contestada

a rectangle has a length of (x+3) centimeters and a width of 1/2x centimeters. If the perimeter is 24 centimeters, what is the length of the rectangle

Respuesta :

Answer:

The length of the rectangle is 9 cm

Step-by-step explanation:

Given: The length of rectangle(l) = (x+3) cm and a width of rectangle (w) = [tex]\frac{1}{2} x[/tex] cm a

Also, perimeter of rectangle is 24 cm.

Perimeter of rectangle is to add the lengths of all the four sides.

Perimeter of rectangle (P) is given by;

P=2(l+w)

Substituting the value of P = 24 cm , l = (x+3) cm and w =[tex]\frac{1}{2} x[/tex]

then,  

[tex]24 = 2 (x+3+\frac{1}{2} x)[/tex]

Divide by 2 both sides of an equation;

[tex]12 = x+3+\frac{1}{2}x[/tex]

Combine like terms;

[tex]12 =\frac{3x}{2} +3[/tex]

Subtract 3 from both the sides we get;

[tex]12-3 = \frac{3x}{2} +3-3[/tex]

Simplify:

[tex]9 =\frac{3x}{2}[/tex]

Multiply both sides by [tex]\frac{2}{3}[/tex] we get

[tex]x = 9 \times \frac{2}{3} = 3 \times 2 = 6[/tex]

Therefore, length of rectangle(l) = (x+3) = 6+3 = 9 cm