atayj
contestada

a square and an equilateral triangle have equal perimeters. the area of the triangle is 
[tex]16 \sqrt{3} [/tex]

square centimeters. how long, in centimeters, is a diagonal of the square? express your answer in simplest radical form.

Respuesta :

gmany

a - length of side of a square

t - length of side of a triangle

The perimeter of a square: [tex]P_S=4a[/tex]

The perimeter of a triangle: [tex]P_T=3t[/tex]

We have the area of a triangle: [tex]A_T=16\sqrt3\ cm^2[/tex]

The formula of an area of an equilateral trinagle: [tex]A_T=\dfrac{t^2\sqrt3}{4}[/tex]

Substitute:

[tex]\dfrac{t^2\sqrt3}{4}=16\sqrt3[/tex]    multiply both sides by 4

[tex]t^2\sqrt3=64\sqrt3[/tex]     divide both sides by [tex]\sqrt3[/tex]

[tex]t^2=64\to t=\sqrt{64}\to t=8\ cm[/tex]

The perimeter of a triangle: [tex]P_T=3(8)=24\ cm[/tex]

Substitute to the formula of a perimeter of a square:

[tex]4a=24[/tex]       divide both sides by 4

[tex]a=6\ cm[/tex]

The formula of a diagonal of a square: [tex]d=a\sqrt2[/tex]

Substitute:

[tex]d=6\sqrt2\ cm[/tex]