a - length of side of a square
t - length of side of a triangle
The perimeter of a square: [tex]P_S=4a[/tex]
The perimeter of a triangle: [tex]P_T=3t[/tex]
We have the area of a triangle: [tex]A_T=16\sqrt3\ cm^2[/tex]
The formula of an area of an equilateral trinagle: [tex]A_T=\dfrac{t^2\sqrt3}{4}[/tex]
Substitute:
[tex]\dfrac{t^2\sqrt3}{4}=16\sqrt3[/tex] multiply both sides by 4
[tex]t^2\sqrt3=64\sqrt3[/tex] divide both sides by [tex]\sqrt3[/tex]
[tex]t^2=64\to t=\sqrt{64}\to t=8\ cm[/tex]
The perimeter of a triangle: [tex]P_T=3(8)=24\ cm[/tex]
Substitute to the formula of a perimeter of a square:
[tex]4a=24[/tex] divide both sides by 4
[tex]a=6\ cm[/tex]
The formula of a diagonal of a square: [tex]d=a\sqrt2[/tex]
Substitute:
[tex]d=6\sqrt2\ cm[/tex]