Respuesta :

B.. 4 is less than or equal to x, 2 is greater or equal to x


Answer:

B. 2x + 3 ≥ 11 or 4x - 7 ≤ 1

Step-by-step explanation:

Given compound inequality,

In option A,

2x + 3 ≥ 11 and 4x - 7 ≤ 1

⇒ 2x ≥ 8 and 4x ≤ 8

⇒ x ≥ 4 and x ≤ 2

[tex]\implies [4,\infty)\cap (-\infty, 2][/tex]

[tex]=\phi[/tex]

2x + 3 ≥ 11 and 4x - 7 ≤ 1 can not be the correct inequality,

In option B,

2x + 3 ≥ 11 or 4x - 7 ≤ 1

⇒ 2x ≥ 8 or 4x ≤ 8

⇒ x ≥ 4 or x ≤ 2

[tex]\implies [4,\infty)\cup (-\infty, 2][/tex]

Which is shown in the given graph,

Thus, 2x + 3 ≥ 11 or 4x - 7 ≤ 1 is the correct compound inequality,

In option C,

2x + 3 > 11 or 4x - 7 < 1

⇒ 2x > 8 or 4x < 8

⇒ x > 4 or x < 2

[tex]\implies (4,\infty)\cup (-\infty, 2)[/tex]

So, which is not shown in the graph,

2x + 3 > 11 or 4x - 7 < 1 can not be the correct compound inequality,

In option D,

2x + 3 ≥ 11 or 4x - 7 ≥ 1

⇒ 2x ≥ 8 or 4x  ≥ 8

⇒ x ≥ 4 or x  ≥ 2

[tex]\implies [4,\infty)[/tex]

Which is not shown in the graph,

2x + 3 ≥ 11 or 4x - 7 ≥ 1 is not the correct compound inequality.