Answer:
[tex]4\ ft^2[/tex]
Step-by-step explanation:
1. Consider triangle COD. The area of this triangle is
[tex]A_{\triangle COD}=\dfrac{1}{2}\cdot CD\cdot h_O=\dfrac{1}{2}\cdot 2CM\cdot h_O=2\cdot \dfrac{1}{2}\cdot CM\cdot h_O=2A_{COM}=2\cdot 2=4\ ft^2.[/tex]
2. Consider triangles AOB and COD:
[tex]A_{\triangle AOB}=\dfrac{1}{2}\cdot AO\cdot BO\cdot \sin \angle AOB,\\ \\A_{\triangle COD}=\dfrac{1}{2}\cdot CO\cdot DO\cdot \sin \angle COD[/tex]
and
[tex]\dfrac{AO}{CO}=\dfrac{DO}{BO}\Rightarrow AO\cdot BO=CO\cdot DO[/tex] (triangles BOC and AOD are similar).
Since angles AOB and COD are vertical, then [tex]\sin \angle AOB=\sin \angle COD.[/tex]
Now,
[tex]A_{\triangle AOB}=\dfrac{1}{2}\cdot AO\cdot BO\cdot \sin \angle AOB=\dfrac{1}{2}\cdot CO\cdot DO\cdot \sin \angle COD=A_{\triangle COD}=4\ ft^2.[/tex]