Respuesta :
Solution: The 90% confidence interval for the population mean is:
[tex]\bar{x} \pm t_{\frac{0.1}{2}} \frac{s}{\sqrt{n}}[/tex]
Where:
[tex]\bar{x}=2.71[/tex]
[tex]s=\sqrt{0.25} =0.5[/tex]
[tex]t_{\frac{0.1}{2}}=1.729[/tex] is the critical value at 0.1 significance level for df = n-1 =20-1=19
[tex]2.71 \pm 1.729 \frac{0.5}{\sqrt{20}}[/tex]
[tex]2.71 \pm0.19[/tex]
[tex]\left( 2.71-0.19,2.71+0.19\right)[/tex]
[tex]\left(2.52,2.90 \right)[/tex]
Therefore, the 90% confidence interval for the population mean is [tex]\left(2.52,2.90 \right)[/tex]
Answer:
The 90% confidence interval for the population mean gpa is [2.526,2.894].
Step-by-step explanation:
The confidence interval for population mean is
[tex]\mu\pm z^{*}\cdot \frac{\sigma}{\sqrt{n}}[/tex]
Where, μ is population mean, σ is standard deviation, z* is the value of z-score and n is number of samples.
The z-score value for 90% confidence interval is 1.645.
The average gpa is found to be 2.71, so μ=2.71. The variance is 0.25, it means
[tex]\sigma^2=0.25[/tex]
[tex]\sigma=0.5[/tex]
The 90% confidence interval for population mean is
[tex]2.71\pm 1.645\cdot \frac{0.5}{\sqrt{20}}[/tex]
[tex][2.71-1.645\cdot \frac{0.5}{\sqrt{20}},2.71+1.645\cdot \frac{0.5}{\sqrt{20}}][/tex]
[tex][2.526,2.894][/tex]
Therefore the 90% confidence interval for the population mean gpa is [2.526,2.894].