Respuesta :

Answer:

Given: In triangle ABC , AD is drawn perpendicular to BC.

Since AD is drawn perpendicular to BC, it creates two right triangles: ADB and ADC.

Prove that: [tex]AB^2-BD^2 = AC^2-CD^2[/tex]

Pythagoras triangle for right angle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

In a right angle triangle ADB;

[tex]AD^2+BD^2 = AB^2[/tex]                 [By Pythagoras theorem]

or

[tex]AD^2= AB^2-BD^2 [/tex]                      .......[1]

Now, in right angle triangle ADC;

[tex]AD^2+CD^2 = AC^2[/tex]                [By Pythagoras theorem]

or we can write this as;

[tex]AD^2= AC^2-CD^2 [/tex]                    ......[2]

Substituting the equation [1] in [2] we get;

[tex]AB^2-BD^2 =AC^2-CD^2 [/tex]            hence proved!

Ver imagen OrethaWilkison