Respuesta :

gmany

[tex](256x^{16})^\frac{1}{4}=(2^8x^{16})^\frac{1}{4}\\\\Use:\ (ab)^n=a^nb^n\ and\ (a^n)^m=a^{nm}\\\\=(2^8)^\frac{1}{4}(x^{16})^\frac{1}{4}=2^{8\cdot\frac{1}{4}}x^{16\cdot\frac{1}{4}}=2^2x^4=4x^4\\\\Answer:\ \boxed{(256x^{16})^\frac{1}{4}=4x^4}[/tex]

Solution:

[tex]=[256x^{16}]^\frac{1}{4}\\\\=[(4 \times 4 \times 4\times 4\times x^{16}]^\frac{1}{4}\\\\ =[(4^4)^{\frac{1}{4}}\times [x^{16}]{\frac{1}{4}}\\\\ =4 \times x^4\\\\={\text{Using the property}} (ab)^\frac{1}{m}=a^\frac{1}{m} b^\frac{1}{m}\\\\{\text{also}} (a^m){\frac{1}{n}}=a^{\frac{m}{n}}[/tex]

Factorizing 256,and, [tex]x^{16}[/tex]

256= 2×2×2×2×2×2×2×2=4×4×4

[tex]x^{16}=x^4\times x^4\times x^4\times x^4[/tex]

Option (B) [tex]4 x^4[/tex] is true.