coplanar squares abgh and bcdf are adjacent, with cd=10 units and ah=5 units. point e is on segments ad and gb what is the area of triangle abe, in square units? express your answer in a common fraction.
![coplanar squares abgh and bcdf are adjacent with cd10 units and ah5 units point e is on segments ad and gb what is the area of triangle abe in square units expr class=](https://us-static.z-dn.net/files/d22/c22218f3441e3259678e880609a73f0f.jpg)
Answer-
[tex]\boxed{\boxed{\text{Area}_{ABE}=\dfrac{25}{3}\ unit^2}}[/tex]
Solution-
ΔABE ~ ΔACD by AA (Angle-Angle) similarity, as
According to the similarity of triangles,
[tex]\Rightarrow \dfrac{AB^2}{AC^2}=\dfrac{\text{Area}_{ABE}}{\text{Area}_{ACD}}[/tex]
[tex]\Rightarrow \dfrac{AB^2}{(AC)^2}=\dfrac{\text{Area}_{ABE}}{\frac{1}{2}\times AC\times CD}[/tex]
[tex]\Rightarrow \dfrac{AB^2}{(AB+BC)^2}=\dfrac{\text{Area}_{ABE}}{\frac{1}{2}\times (AB+BC)\times CD}[/tex]
[tex]\Rightarrow \dfrac{5^2}{(5+10)^2}=\dfrac{\text{Area}_{ABE}}{\frac{1}{2}\times (5+10)\times 10}[/tex]
[tex]\Rightarrow \dfrac{5^2}{15^2}=\dfrac{\text{Area}_{ABE}}{\frac{1}{2}\times 15\times 10}[/tex]
[tex]\Rightarrow \dfrac{25}{225}=\dfrac{\text{Area}_{ABE}}{75}[/tex]
[tex]\Rightarrow \text{Area}_{ABE}=\dfrac{25\times 75}{225}[/tex]
[tex]\Rightarrow \text{Area}_{ABE}=\dfrac{25}{3}\ unit^2[/tex]