atayj
contestada

coplanar squares abgh and bcdf are adjacent, with cd=10 units and ah=5 units. point e is on segments ad and gb what is the area of triangle abe, in square units? express your answer in a common fraction.

coplanar squares abgh and bcdf are adjacent with cd10 units and ah5 units point e is on segments ad and gb what is the area of triangle abe in square units expr class=

Respuesta :

Answer-

[tex]\boxed{\boxed{\text{Area}_{ABE}=\dfrac{25}{3}\ unit^2}}[/tex]

Solution-

ΔABE ~ ΔACD by AA (Angle-Angle) similarity, as

  1. m∠BAE = m∠CAD (as ∠A is common to both)
  2. m∠ABE = m∠ACD = 90° (As each angles of a square is 90°)

According to the similarity of triangles,

[tex]\Rightarrow \dfrac{AB^2}{AC^2}=\dfrac{\text{Area}_{ABE}}{\text{Area}_{ACD}}[/tex]

[tex]\Rightarrow \dfrac{AB^2}{(AC)^2}=\dfrac{\text{Area}_{ABE}}{\frac{1}{2}\times AC\times CD}[/tex]

[tex]\Rightarrow \dfrac{AB^2}{(AB+BC)^2}=\dfrac{\text{Area}_{ABE}}{\frac{1}{2}\times (AB+BC)\times CD}[/tex]

[tex]\Rightarrow \dfrac{5^2}{(5+10)^2}=\dfrac{\text{Area}_{ABE}}{\frac{1}{2}\times (5+10)\times 10}[/tex]

[tex]\Rightarrow \dfrac{5^2}{15^2}=\dfrac{\text{Area}_{ABE}}{\frac{1}{2}\times 15\times 10}[/tex]

[tex]\Rightarrow \dfrac{25}{225}=\dfrac{\text{Area}_{ABE}}{75}[/tex]

[tex]\Rightarrow \text{Area}_{ABE}=\dfrac{25\times 75}{225}[/tex]

[tex]\Rightarrow \text{Area}_{ABE}=\dfrac{25}{3}\ unit^2[/tex]