Answer:
[tex]625\pi\ mm^{3}[/tex]
Step-by-step explanation:
we know that
The volume of the figure is equal to the volume of two cones plus the volume of the cylinder
Find the volume of one cone
[tex]V=\frac{1}{3}\pi r^{2} h[/tex]
we have
[tex]r=10/2=5\ mm[/tex] -----> the radius is half the diameter
[tex]h=15\ mm[/tex]
substitute the values
[tex]V=\frac{1}{3}\pi (5^{2})(15)=125\pi\ mm^{3}[/tex]
Find the volume of the cylinder
[tex]V=\pi r^{2} h[/tex]
we have
[tex]r=10/2=5\ mm[/tex] -----> the radius is half the diameter
[tex]h=15\ mm[/tex]
substitute the values
[tex]V=\pi (5^{2})(15)=375\pi\ mm^{3}[/tex]
Find the volume of the figure
[tex]2*125\pi\ mm^{3}+375\pi\ mm^{3}=625\pi\ mm^{3}[/tex]