Answer: The correct option is (D) [tex]g(x)=2^{-x}.[/tex]
Step-by-step explanation: Given that the function k(x) = (g x h)(x) is graphed in the figure, where g is an exponential function and h is a linear function.
We are to find the formula for g, if h(x) = x + 1.
From the graph, we note the following two values :
[tex]k(0)=1,~~k(3)=0.5.[/tex]
Now, will check our options one by one.
Option (A) :
Here, [tex]g(x)=2^x.[/tex]
S0,
[tex]k(x)=(g\times h)(x)=g(x)\times h(x)=2^x(x+1).[/tex]
At x = 0 and 3, we get
[tex]k(0)=2^0(0+1)=1,\\\\k(3)=2^3(3+1)=32\neq 0.5.[/tex]
This option is not correct.
Option (B) :
Here, [tex]g(x)=-2^x.[/tex]
S0,
[tex]k(x)=(g\times h)(x)=g(x)\times h(x)=-2^x(x+1).[/tex]
At x = 0 and 3, we get
[tex]k(0)=-2^0(0+1)=-1\neq 1,\\\\k(3)=-2^3(3+1)=-32\neq 0.5.[/tex]
This option is not correct.
Option (C) :
Here, [tex]g(x)=-2^{-x}.[/tex]
So,
[tex]k(x)=(g\times h)(x)=g(x)\times h(x)=-2^{-x}(x+1).[/tex]
At x = 0 and 3, we get
[tex]k(0)=-2^{-0}(0+1)=-1\neq 1,\\\\k(3)=-2^{-3}(3+1)=-\dfrac{1}{8}(4)=-0.5\neq 0.5.[/tex]
This option is not correct.
Option (D) :
Here, [tex]g(x)=2^{-x}.[/tex]
S0,
[tex]k(x)=(g\times h)(x)=g(x)\times h(x)=2^{-x}(x+1).[/tex]
At x = 0 and 3, we get
[tex]k(0)=2^{-0}(0+1)=1,\\\\k(3)=2^{-3}(3+1)=\dfrac{1}{8}(4)=0.5.[/tex]
Therefore, [tex]g(x)=2^{-x}.[/tex]
This option is CORRECT.
Hence, (D) is the correct option.