Respuesta :
Answer-
(78,104) is the closest to the interior point.
Solution-
The equation of the circle,
[tex]\Rightarrow x^2+y^2 = 16900[/tex]
[tex]\Rightarrow y^2 = 16900-x^2[/tex]
[tex]\Rightarrow y = \sqrt{16900-x^2}[/tex]
As the point will be on the circle, so the coordinate of the point will be,
[tex](x,\sqrt{16900-x^2})[/tex]
The distance "d' between the point and (30,40) is,
[tex]=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]
[tex]=\sqrt{(x-30)^2+(\sqrt{16900-x^2}-40)^2}[/tex]
[tex]=\sqrt{x^2+900-60x+16900-x^2+1600-80\sqrt{16900-x^2}}[/tex]
[tex]=\sqrt{9400-60x-80\sqrt{16900-x^2}}[/tex]
Now, we have to calculate x for which d is minimum. d will be minimum when [tex]9400-60x-80\sqrt{16900-x^2}[/tex] will be minimum.
Let,
[tex]\Rightarrow f(x)=9400-60x-80\sqrt{16900-x^2}[/tex]
[tex]\Rightarrow f'(x)=-60+80\dfrac{x}{\sqrt{16900-x^2}}[/tex]
[tex]\Rightarrow f''(x)=\dfrac{1352000}{\left(16900-x^2\right)\sqrt{16900-x^2}}[/tex]
Finding the critical values,
[tex]\Rightarrow f'(x)=0[/tex]
[tex]\Rightarrow-60+80\dfrac{x}{\sqrt{16900-x^2}}=0[/tex]
[tex]\Rightarrow 80\dfrac{x}{\sqrt{16900-x^2}}=60[/tex]
[tex]\Rightarrow 80x=60\sqrt{16900-x^2}[/tex]
[tex]\Rightarrow 80^2x^2=60^2(16900-x^2)[/tex]
[tex]\Rightarrow 6400x^2=3600(16900-x^2)[/tex]
[tex]\Rightarrow \dfrac{16}{9}x^2=16900-x^2[/tex]
[tex]\Rightarrow \dfrac{25}{9}x^2=16900[/tex]
[tex]\Rightarrow x=\sqrt{\dfrac{16900\times 9}{25}}=78[/tex]
[tex]\Rightarrow x=78[/tex]
Then,
[tex]\Rightarrow f''(78)=\dfrac{1352000}{\left(16900-78^2\right)\sqrt{16900-78^2}}=\dfrac{125}{104}=1.2[/tex]
f''(x) is positive, so f(x) will be minimum at x=78
For x = 78, y will be
[tex]\Rightarrow y = \sqrt{16900-x^2}=\sqrt{16900-78^2}=104[/tex]
Therefore, the point is (78,104)

