Respuesta :

Answer-

(78,104) is the closest to the interior point.

Solution-

The equation of the circle,

[tex]\Rightarrow x^2+y^2 = 16900[/tex]

[tex]\Rightarrow y^2 = 16900-x^2[/tex]

[tex]\Rightarrow y = \sqrt{16900-x^2}[/tex]

As the point will be on the circle, so the coordinate of the point will be,

[tex](x,\sqrt{16900-x^2})[/tex]

The distance "d' between the point and (30,40) is,

[tex]=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]

[tex]=\sqrt{(x-30)^2+(\sqrt{16900-x^2}-40)^2}[/tex]

[tex]=\sqrt{x^2+900-60x+16900-x^2+1600-80\sqrt{16900-x^2}}[/tex]

[tex]=\sqrt{9400-60x-80\sqrt{16900-x^2}}[/tex]

Now, we have to calculate x for which d is minimum. d will be minimum when  [tex]9400-60x-80\sqrt{16900-x^2}[/tex]  will be minimum.

Let,

[tex]\Rightarrow f(x)=9400-60x-80\sqrt{16900-x^2}[/tex]

[tex]\Rightarrow f'(x)=-60+80\dfrac{x}{\sqrt{16900-x^2}}[/tex]

[tex]\Rightarrow f''(x)=\dfrac{1352000}{\left(16900-x^2\right)\sqrt{16900-x^2}}[/tex]

Finding the critical values,

[tex]\Rightarrow f'(x)=0[/tex]

[tex]\Rightarrow-60+80\dfrac{x}{\sqrt{16900-x^2}}=0[/tex]

[tex]\Rightarrow 80\dfrac{x}{\sqrt{16900-x^2}}=60[/tex]

[tex]\Rightarrow 80x=60\sqrt{16900-x^2}[/tex]

[tex]\Rightarrow 80^2x^2=60^2(16900-x^2)[/tex]

[tex]\Rightarrow 6400x^2=3600(16900-x^2)[/tex]

[tex]\Rightarrow \dfrac{16}{9}x^2=16900-x^2[/tex]

[tex]\Rightarrow \dfrac{25}{9}x^2=16900[/tex]

[tex]\Rightarrow x=\sqrt{\dfrac{16900\times 9}{25}}=78[/tex]

[tex]\Rightarrow x=78[/tex]

Then,

[tex]\Rightarrow f''(78)=\dfrac{1352000}{\left(16900-78^2\right)\sqrt{16900-78^2}}=\dfrac{125}{104}=1.2[/tex]

f''(x) is positive, so f(x) will be minimum at x=78

For x = 78, y will be

[tex]\Rightarrow y = \sqrt{16900-x^2}=\sqrt{16900-78^2}=104[/tex]

Therefore, the point is (78,104)

Ver imagen InesWalston
RELAXING NOICE
Relax