Respuesta :
Answer: 0.6
Step-by-step explanation:
The given expression : [tex]\sqrt{0.36}[/tex]
This can be written as :
[tex]\sqrt{\dfrac{36}{100}}[/tex]
According to the Quotient property of radicals:
[tex]\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}[/tex]
[tex]=\dfrac{\sqrt{36}}{\sqrt{100}}[/tex]
Here 36 and 100 both are square numbers ∵ [tex]36=6^2[/tex] and [tex]100=10^2[/tex] , then our expression becomes
[tex]=\dfrac{\sqrt{6^2}}{\sqrt{10^2}}[/tex]
Also, property of radicals says : [tex]\sqrt[n]{a^n}=a[/tex]
Then, [tex]=\dfrac{\sqrt{6^2}}{\sqrt{10^2}}=\dfrac{6}{10}=0.6[/tex]
Hence , the correct answer is 0.6 .
Otras preguntas
