Respuesta :

Answer: [tex]\frac{\pi }{3}[/tex]

Step-by-step explanation:

cot is [tex]\frac{cos}{sin}[/tex] on the Unit Circle. When is cos = [tex]\frac{1}{2}[/tex] and sin = [tex]\frac{\sqrt{3}} {2}[/tex]?  In other words, where is the coordinate [tex](\frac{1}{2},\frac{\sqrt{3}} {2})[/tex] on the Unit Circle?

It occurs at 60° = [tex]\frac{\pi }{3}[/tex] radians

**************************************************************************************

Answer: cot θ

Step-by-step explanation:

  sec (90 - θ) * cos θ

= [tex]\frac{1}{cos (90 -\theta)}[/tex] * cos θ

= [tex]\frac{cos\theta}{cos(90 - \theta)}[/tex]

= [tex]\frac{cos\theta}{cos90*cos\theta+sin90*sin\theta}[/tex]

= [tex]\frac{cos\theta}{0*cos\theta+1*sin\theta}[/tex]

= [tex]\frac{cos\theta}{sin\theta}[/tex]

= cot θ

**************************************************************************************

Answer: BC = √5, AC = 2√5

Step-by-step explanation:

[tex]\frac{\pi} {3}[/tex] = 60°, which means ΔABC is a 30°-60°-90° triangle so we can use the side length formulas: x - x√3 - 2x.

∠C is the 60°. It matches to side AB so: AB = x√3 = √15   ⇒   x = √5

∠A is the 30°. It matches to side BC so: BC = x = √5

∠B is the 90°. It matches to side AC so: AC = 2x = 2(√5)  = 2√5

**************************************************************************************

Answer: k = 4, RS = 12, QS = 28

Step-by-step explanation:

[tex]\frac{QR}{MN} = \frac{RS}{NO}= \frac{QS}{MO}[/tex]

[tex]\frac{24}{6} = \frac{RS}{3}= \frac{QS}{7}[/tex]

proportionality constant k can be found with [tex]\frac{QR}{MN}[/tex] = [tex]\frac{24}{6}[/tex] = 4

[tex]\frac{QR}{MN} = \frac{RS}{NO}[/tex]

→ 4 = [tex]\frac{RS}{3}[/tex]

→ 4(3) = RS

→ 12 = RS

[tex]\frac{QR}{MN} = \frac{QS}{MO}[/tex]

→ 4 = [tex]\frac{QS}{7}[/tex]

→ 4(7) = QS

→ 28 = QS


RELAXING NOICE
Relax