Yuii
contestada

PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS!!

Newton’s law of cooling states that for a cooling substance with initial temperature T^0 , the temperature T(t) after t minutes can be modeled by the equation T(t) = T^s+(T^0−T^s)^e−kt , where T^s is the surrounding temperature and k is the substance’s cooling rate.

A liquid substance is heated to 80°C . Upon being removed from the heat, it cools to 60°C in 15 min.

What is the substance’s cooling rate when the surrounding air temperature is 50°C ?

Round the answer to four decimal places.

A. 0.0687

B. 0.0732

C. 0.0813

D. 0.0872

PLEASE HELP ASAP CORRECT ANSWER ONLY PLEASE I CANNOT RETAKE THIS Newtons law of cooling states that for a cooling substance with initial temperature T0 the temp class=

Respuesta :

DeanR

[tex]T(t) = T_s + (T_0 - T_s)e^{-kt}[/tex]

[tex]T(t) - T_s = (T_0 - T_s)e^{-kt}[/tex]

[tex] \dfrac{ T(t) - T_s}{T_0 - T_s} = e^{-kt}[/tex]

[tex] \ln \dfrac{ T(t) - T_s}{T_0 - T_s} = -kt[/tex]

[tex]k = - \dfrac{ \ln \dfrac{ T(t) - T_s}{T_0 - T_s} }{t}[/tex]

OK now let's plug in the numbers.

We have t=15 minutes, T_0 = 80 C, Ts = 50, T(15)=60 C,

[tex]k = - \dfrac{ \ln \dfrac{ 60 - 50}{80 - 50} }{15 \textrm{ min}}[/tex]

[tex]k = - \frac{1}{15} \ln \frac 1 3 [/tex]

[tex]k = \frac{1}{15} \ln 3[/tex]

[tex]k \approx 0.07324[/tex] per minute

Answer: B


Answer: B

Step-by-step explanation:

Just a verification of the anwser above.

RELAXING NOICE
Relax