we are given
[tex]f(x)=4x^3+21x^2-294x+7[/tex]
For finding inflection point, we will find second derivative
[tex]f'(x)=4\times 3x^2+21\times 2x-294+0[/tex]
[tex]f'(x)=12x^2+42x-294[/tex]
now, we can find derivative again
[tex]f''(x)=12\times 2x+42-0[/tex]
[tex]f''(x)=24x+42[/tex]
now, we can set it to 0
and then we can solve for x
[tex]f''(x)=24x+42=0[/tex]
we get
[tex]x=-\frac{7}{4}[/tex]
we know that inflection point is a point where concavity changes
so, we will draw a number line and locate x=-7/4
and then we can find sign of second derivative on each interval
Concave up interval:
[tex](-\frac{7}{4},\infty)[/tex]
Concave down interval:
[tex](-\infty,-\frac{7}{4})[/tex]
Since, concavity changes at x=-7/4
So, there will be inflection point at x=-7/4
now, we can find y-value
[tex]f(-\frac{7}{4}) =4(-\frac{7}{4})^3+21(-\frac{7}{4})^2-294(-\frac{7}{4})+7[/tex]
[tex]f(-\frac{7}{4}) =\frac{4515}{8}[/tex]
So, the inflection point is
[tex](-\frac{7}{4},\frac{4515}{8})[/tex]..............Answer