Respuesta :

we are given

[tex]f(x)=4x^3+21x^2-294x+7[/tex]

For finding inflection point, we will find second derivative

[tex]f'(x)=4\times 3x^2+21\times 2x-294+0[/tex]

[tex]f'(x)=12x^2+42x-294[/tex]

now, we can find derivative again

[tex]f''(x)=12\times 2x+42-0[/tex]

[tex]f''(x)=24x+42[/tex]

now, we can set it to 0

and then we can solve for x

[tex]f''(x)=24x+42=0[/tex]

we get

[tex]x=-\frac{7}{4}[/tex]

we know that inflection point is a point where concavity changes

so, we will draw a number line and locate x=-7/4

and then we can find sign of second derivative on each interval

Concave up interval:

[tex](-\frac{7}{4},\infty)[/tex]

Concave down interval:

[tex](-\infty,-\frac{7}{4})[/tex]

Since, concavity changes at x=-7/4

So, there will be inflection point at x=-7/4

now, we can find y-value

[tex]f(-\frac{7}{4}) =4(-\frac{7}{4})^3+21(-\frac{7}{4})^2-294(-\frac{7}{4})+7[/tex]

[tex]f(-\frac{7}{4}) =\frac{4515}{8}[/tex]

So, the inflection point is

[tex](-\frac{7}{4},\frac{4515}{8})[/tex]..............Answer


Ver imagen rejkjavik
RELAXING NOICE
Relax