Respuesta :

Answer: c ≠ {-7, -3, 2, 5}

Step-by-step explanation:

  [tex]\frac{c^{2} - 3c - 10}{c^{2} + 5c - 14} * \frac{c^{2} - c - 2}{c^{2} - 2c - 15}[/tex]

= [tex]\frac{(c - 5)(c + 2)}{(c + 7)(c - 2)} * \frac{(c - 2)(c + 1)}{(c - 5)(c +3)}[/tex]

restrictions:

c + 7 ≠ 0           c - 2 ≠ 0          c - 5 ≠ 0          c + 3 ≠ 0

    c ≠ -7                 c ≠ 2               c ≠ 5                c ≠ -3

RELAXING NOICE
Relax