Respuesta :
using the addition formulae for sin
• sin(x + y ) = sinxcosy + cosxsiny
sin (x + (7π/4))
= sinx cos (7π/4) + cosxsin (7π/4)
[ the related acute angle for 7π/4 is π/4 ]
= sinxcos (π/4) + cosx (- sin (π/4 )
= sinx × √2 / 2 - cosx × √2 /2
= √2 / 2(sinx - cosx )
[tex]\mathbf{sin(x + \frac{7\pi}{4}})}[/tex] in terms of sin(x) and cos(x) s [tex]\mathbf{ \frac{\sqrt 2}{2} (sin(x) - cos(x))}[/tex]
The expression is given as:
[tex]\mathbf{sin(x + \frac{7\pi}{4}})}[/tex]
Using sine rule, we have:
[tex]\mathbf{sin(a + b ) = sin(a)cos(b) + cos(a)sin(b)}[/tex]
So, the expression becomes
[tex]\mathbf{sin(x + \frac{7\pi}{4} ) = sin(x)cos(\frac{7\pi}{4}) + cos(x)sin(\frac{7\pi}{4})}[/tex]
7π/4 is corresponding to π/4.
So, we have:
[tex]\mathbf{sin(x + \frac{7\pi}{4} ) = sin(x)cos(\frac{\pi}{4}) + cos(x)sin(-\frac{\pi}{4})}[/tex]
Evaluate the sine and the cosine of the angle
[tex]\mathbf{sin(x + \frac{7\pi}{4} ) = sin(x) \times \frac{\sqrt 2}{2} - cos(x)\times \frac{\sqrt 2}{2} }[/tex]
Factor out √2 / 2
[tex]\mathbf{sin(x + \frac{7\pi}{4} ) = \frac{\sqrt 2}{2} (sin(x) - cos(x))}[/tex]
Hence, the equivalent of [tex]\mathbf{sin(x + \frac{7\pi}{4}})}[/tex] is [tex]\mathbf{ \frac{\sqrt 2}{2} (sin(x) - cos(x))}[/tex]
Read more about trigonometry ratios at:
https://brainly.com/question/24888715