Answer: t = (5x² - 6x - 1)/(3x² - 5x²)
Step-by-step explanation:
3tx - 5x = (t + 2)(t - 3) - t² - [tex]\frac{1}{x}[/tex]
3tx - 5x = t² - t - 6 - t² - [tex]\frac{1}{x}[/tex]
3tx - 5x = - t - 6 - [tex]\frac{1}{x}[/tex]
3tx² - 5x² = -tx - 6x - 1
+tx + 5x² +tx + 5x²
3tx² + tx = 5x² - 6x - 1
t(3x² - 5x²) = 5x² - 6x - 1
÷ (3x² - 5x²) ÷ (3x² - 5x²)
t = (5x² - 6x - 1)/(3x² - 5x²)