Respuesta :
Answer: The solution of the system of equations is [tex]x=\frac{-53}{11}[/tex], [tex]y=\frac{47}{11}[/tex] and [tex]z=\frac{-38}{11}[/tex].
Explanation:
The given equations are,
[tex]x+y+z=-4[/tex] ..... (1)
[tex]-x+2y+3z=3[/tex] ..... (2)
[tex]x-4y-2z=-15[/tex] ...... (3)
From equation we get,
[tex]x=-4-y-z[/tex]
Put this value in equation (4) and (5).
[tex]-(-4-y-z)+2y+3z=3[/tex]
[tex]3y+4z=-1[/tex] .... (4)
[tex](-4-y-z)-4y-2z=-15[/tex]
[tex]-5y-3z=-11[/tex] .....(5)
Use elimination method to solve the equations (4) and (5).
Multiply equation (4) by 3 and equation (5) by 4, then add both equations as shown in figure,
[tex]-11y=-47[/tex]
[tex]y=\frac{47}{11}[/tex]
Put this value in equation (4).
[tex]3(\frac{47}{11})+4z=-1[/tex]
[tex]4z=-1-\frac{141}{11}[/tex]
[tex]4z=\frac{-11-141}{11}[/tex]
[tex]z=\frac{-152}{11\times 4}[/tex]
[tex]z=\frac{-38}{11}[/tex]
Put [tex]y=\frac{47}{11}[/tex] and [tex]z=\frac{-38}{11}[/tex] in equation (1).
[tex]x+\frac{47}{11}+\frac{-38}{11}=-4[/tex]
[tex]x+\frac{9}{11}=-4[/tex]
[tex]x=\frac{-44-9}{11}[/tex]
[tex]x=\frac{-53}{11}[/tex]
Therefore, the The solution of the system of equations is [tex]x=\frac{-53}{11}[/tex], [tex]y=\frac{47}{11}[/tex] and [tex]z=\frac{-38}{11}[/tex].
![Ver imagen DelcieRiveria](https://us-static.z-dn.net/files/d15/1fb10902717615c3f0c9b9447407d501.jpg)
Answer:
The given equations are
x + y + z = -4
-x + 2 y + 3 z = 3
x - 4 y - 2 z = -15
Writing in matrix form
A= 1 1 1 X= x B= -4
-1 2 3 y 3 ⇒A,X,B are in matrix form.
1 -4 -2 z -15
i.e Ax=B
x =[tex]A^{-1}[/tex]B
but ,[tex]A^{-1}[/tex]=Adj.(A)/Determinant A
Determinant of A= 1(-4+12) -1(2-3)+1(4-2)=8+1+2=11
To find Adjoint of matrix A, we will find the cofactor of A and then it's transpose.
[tex]a_{11}[/tex]=-4+12=8, [tex]a_{12}=-[2-3]=1,[/tex]
[tex],a_{13}=4-2=2,\\,a_{21}=-[-2+4]=-2\\,a_{22}=-2-1=-3,\\a_{23}=-[-4-1]=5,\\a_{31}=[3-2]=1\\,a_{32}=-[3+1]=-4\\,a_{33}=2+1=3[/tex]
Now taking cofactor, and getting the adjoint
Adjoint (A)= 8 -2 1
1 - 3 -4
2 5 3
Adjoint(A). B= -53
47
-38
[tex]\frac{Adjoint (A)\times B}{Determinant A}[/tex] = -53/11
47/11
-38/11
So, solution set is , x=-53/11, y=47/11, z=-38/11