Respuesta :

Answer:

By AA

ΔWXY ~ΔWVZ

Step-by-step explanation:

Here WXY is an isosceles triangle with legs WX & WY

So WX = WY

Hence ∠X = ∠Y

So ∠2= ∠3.

Now by angle sum property

∠1 + ∠2+∠3 = 180°

∠1+∠2+∠2=180°

2∠2 = 180° - ∠1     .......(1)

In triangle WVZ

WV = WZ

So ∠V = ∠Z

∠4 = ∠5

Once again by angle sum property

∠1 + ∠4 + ∠5=180°

∠1 + ∠4 + ∠4 = 180°

2∠4 = 180° - ∠1       ...(2)

From (1) & (2)

2∠2 = 2∠4

∠2=∠4

Now ∠W is common to both triangles

Hence by AA

ΔWXY ~ΔWVZ

Ver imagen zagreb

Answer:

Complete the steps of the proof.

♣: WX = WY; WV = WZ

♦: substitution property

♠: SAS similarity theorem

Step-by-step explanation:

edgyyy

ACCESS MORE