Respuesta :

Space

Answer:

[tex]\displaystyle y' = \frac{-3x^2}{10y}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Implicit Differentiation

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle x^3 + 5y^2 = 2[/tex]

Step 2: Differentiate

  1. Implicit Differentiation [Derivative Property - Addition/Subtraction]:         [tex]\displaystyle \frac{d}{dx}[x^3] + \frac{d}{dx}[5y^2] = \frac{d}{dx}[2][/tex]
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   [tex]\displaystyle \frac{d}{dx}[x^3] + 5 \frac{d}{dx}[y^2] = \frac{d}{dx}[2][/tex]
  3. Basic Power Rule [Derivative Rule - Chain Rule]:                                       [tex]\displaystyle 3x^2 + 10yy' = 0[/tex]
  4. Isolate y' term:                                                                                               [tex]\displaystyle 10yy' = -3x^2[/tex]
  5. Isolate y':                                                                                                       [tex]\displaystyle y' = \frac{-3x^2}{10y}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

ACCESS MORE