Respuesta :
Answer:
[tex]\displaystyle y' = \frac{-3x^2}{10y}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Implicit Differentiation
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle x^3 + 5y^2 = 2[/tex]
Step 2: Differentiate
- Implicit Differentiation [Derivative Property - Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[x^3] + \frac{d}{dx}[5y^2] = \frac{d}{dx}[2][/tex]
- Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle \frac{d}{dx}[x^3] + 5 \frac{d}{dx}[y^2] = \frac{d}{dx}[2][/tex]
- Basic Power Rule [Derivative Rule - Chain Rule]: [tex]\displaystyle 3x^2 + 10yy' = 0[/tex]
- Isolate y' term: [tex]\displaystyle 10yy' = -3x^2[/tex]
- Isolate y': [tex]\displaystyle y' = \frac{-3x^2}{10y}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation