What are the solutions of the following system? { 10x^2-y=48 and 2y=16x^2+48

A) (2 sqrt3, 120) and (-2 sqrt3, 120)
B) (2 sqrt3, 120) and (-2 sqrt 3, -72)
C) (6, 312) and (-6, 312)
D) (6, 312) and (-6,-264)

Respuesta :

we are given

[tex]10x^2-y=48[/tex]

[tex]2y=16x^2+48[/tex]

Firstly, we will solve for y

[tex]y=8x^2+24[/tex]

now, we can plug that into first equation

[tex]10x^2-(8x^2+24)=48[/tex]

now, we can simplify it

[tex]10x^2-8x^2-24=48[/tex]

[tex]2x^2-24=48[/tex]

Add both sides by 24

[tex]2x^2-24+24=48+24[/tex]

[tex]2x^2=48+24[/tex]

[tex]2x^2=72[/tex]

Divide both sides by 2

[tex]x^2=36[/tex]

now, we can solve for x

[tex]x=-6,x=6[/tex]

now, we can find y-value

[tex]y=8x^2+24[/tex]

At x=-6:

we can plug x=-6

[tex]y=8(-6)^2+24[/tex]

[tex]y=8\times 36+24[/tex]

[tex]y=312[/tex]

At x=6:

we can plug x=6

[tex]y=8(6)^2+24[/tex]

[tex]y=8\times 36+24[/tex]

[tex]y=312[/tex]

so, we get solution as

C) (6, 312) and (-6, 312)..........Answer

Answer:

C

Step-by-step explanation: