Respuesta :
How to get answer for number 1: | 4+2i |
[tex]\left|a+bi\right|\:=\sqrt{\left(a+bi\right)\left(a-bi\right)}=\sqrt{a^2+b^2}\\\mathrm{With\:}a=4,\:b=2\\=\sqrt{4^2+2^2}\\Refine\\=\sqrt{20}\\\sqrt{20}=2\sqrt{5}\\=2\sqrt{5}[/tex]
How to get answer for number 2: | 5-i |
[tex]\left|a+bi\right|\:=\sqrt{\left(a+bi\right)\left(a-bi\right)}=\sqrt{a^2+b^2}\\\mathrm{With\:}a=5,\:b=-1\\=\sqrt{5^2+\left(-1\right)^2}\\=\sqrt{26}[/tex]
Number 3 how to get answer: | -3i |
[tex]\left|a+bi\right|\:=\sqrt{\left(a+bi\right)\left(a-bi\right)}=\sqrt{a^2+b^2}\\\mathrm{With\:}a=0,\:b=-3\\=\sqrt{0^2+\left(-3\right)^2}\\Refine\\=\sqrt{9}\\\sqrt{9}\\\mathrm{Factor\:the\:number:\:}\:9=3^2\\=\sqrt{3^2}\\\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a\\\sqrt{3^2}=3\\= 3[/tex]
Well it would stay the same since you need to have i to equal something