Respuesta :
Potential energy is given as
[tex]U = 4y^3[/tex]
now as we know that force is related by potential energy by the formula
[tex]F = - \frac{dU}{dy}[/tex]
So it is gradient of energy with position in Y
[tex]F = - \fracd(4y^3}{dy}[/tex]
[tex]F = -12y^2 \hat j[/tex]
Now at y = 0
[tex]F = 0 N[/tex]
at y = 1
[tex]F = - 12*1^2 [/tex]
[tex]F = - 12 N[/tex]
at y = 2
[tex]F = - 12*2^2[/tex]
[tex]F = - 48 N[/tex]
so above is the forces at given positions
The force on the particle at
[tex]y=0\;\text{is} \;0\;\text{N}\\\\y=1\;\text{is} \;12\;\text{N}\\\\y=2\;\text{is} \;48\;\text{N}\\[/tex]
Explanation:
Given information:
The potential energy: [tex]U=4y^3[/tex]
Now, as we know that force:
[tex]F=-\frac{dU}{dy}[/tex]
So, the gradient of energy with position y
[tex]F=-4y^3dy\\F=-12y^2j[/tex]
At, y=0
[tex]F=0\;N[/tex].
At, y=1
[tex]F=-12+1\\F=-12 \;N[/tex]
At, y=2
[tex]F=-12\times 4\\F=-48\;\text{N}[/tex]
Hence , The force on the particle at
[tex]y=0\;\text{is} \;0\;\text{N}\\\\y=1\;\text{is} \;12\;\text{N}\\\\y=2\;\text{is} \;48\;\text{N}\\[/tex]
For more information visit:
https://brainly.com/question/20982168?referrer=searchResults