A particle moving along the y-axis has the potential energy u =4y3j, where y is in m. what is the y-component of the force on the particle at y=0 m, 1 m, and 2 m?

Respuesta :

Potential energy is given as

[tex]U = 4y^3[/tex]

now as we know that force is related by potential energy by the formula

[tex]F = - \frac{dU}{dy}[/tex]

So it is gradient of energy with position in Y

[tex]F = - \fracd(4y^3}{dy}[/tex]

[tex]F = -12y^2 \hat j[/tex]

Now at y = 0

[tex]F = 0 N[/tex]

at y = 1

[tex]F = - 12*1^2 [/tex]

[tex]F = - 12 N[/tex]

at y = 2

[tex]F = - 12*2^2[/tex]

[tex]F = - 48 N[/tex]

so above is the forces at given positions

The force on the particle at

[tex]y=0\;\text{is} \;0\;\text{N}\\\\y=1\;\text{is} \;12\;\text{N}\\\\y=2\;\text{is} \;48\;\text{N}\\[/tex]

Explanation:

Given information:

The potential energy: [tex]U=4y^3[/tex]

Now, as we know that force:

[tex]F=-\frac{dU}{dy}[/tex]

So, the gradient of energy with position y

[tex]F=-4y^3dy\\F=-12y^2j[/tex]

At, y=0

[tex]F=0\;N[/tex].

At, y=1

[tex]F=-12+1\\F=-12 \;N[/tex]

At, y=2

[tex]F=-12\times 4\\F=-48\;\text{N}[/tex]

Hence , The force on the particle at

[tex]y=0\;\text{is} \;0\;\text{N}\\\\y=1\;\text{is} \;12\;\text{N}\\\\y=2\;\text{is} \;48\;\text{N}\\[/tex]

For more information visit:

https://brainly.com/question/20982168?referrer=searchResults

ACCESS MORE