Answer: The process to create linear equation is given below.
Case 1: When 2 data points are given.
Let the two data ints be [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex].
Then the linear equation is defined by the formula,
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1} (x-x_1)[/tex] ..... (1)
For example: Let the two points be (2,-1) and (-4,2). Then we get,
[tex]y+1=\frac{2+1}{-4-2} (x-2)[/tex]
[tex]y+1=\frac{3}{-6} (x-2)[/tex]
[tex]2y+2=-x+2[/tex]
[tex]2y=-x[/tex]
[tex]y=\frac{-1}{2}x[/tex]
Case 2: When the initial value and rate of change is given.
Let the initial value be [tex](x_1,y_1)[/tex] and slope is m. The rate of change is know as slope.
Then the linear equation is defined by the formula,
[tex]y-y_1=m(x-x_1)[/tex] ..... (2)
For example: Let the initial point be (4,5) and rate of change is 2. Then we get,
[tex]y-5=2(x-4)[/tex]
[tex]y-5=2x-8[/tex]
[tex]y=2x-3[/tex]
Hence, the equation (1) and (2) are the formula to create a linear equation.