We are given expression: [tex](2x^4y^5)^{3/8}[/tex]
Let us distribute 3/8 over exponents in parenthesis, we get
[tex](2^{3/8}x^{4\times 3/8}y^{5\times 3/8}) = (2^{3/8}x^{12/8}y^{15/8})[/tex]
[tex]= (2^{3/8}x^{1\frac{4}{8}} y^{1\frac{7}{8}} )[/tex]
We can get x and y out of the radical because, we get whlole number 1 for x and y exponents for the mixed fractions.
So, we could write it as.
[tex](2^{3/8}x^{1\frac{4}{8}} y^{1\frac{7}{8}} ) = xy(2^{\frac{3}{8} }x^{\frac{4}{8}} y^{\frac{7}{8}} )[/tex]
Now, we could write inside expression of parenthesis in radical form.
[tex]xy\sqrt[8]{2x^{3}x^4y^7}[/tex]